pawan2411 commited on
Commit
ce99c17
1 Parent(s): b564c41

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,357 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: pawan2411/address_net
3
+ datasets: []
4
+ language: []
5
+ library_name: sentence-transformers
6
+ pipeline_tag: sentence-similarity
7
+ tags:
8
+ - sentence-transformers
9
+ - sentence-similarity
10
+ - feature-extraction
11
+ - generated_from_trainer
12
+ - dataset_size:4008
13
+ - loss:MultipleNegativesRankingLoss
14
+ widget:
15
+ - source_sentence: Orchard Road 313, Singapore 238895
16
+ sentences:
17
+ - Orchard Rd 313, Singapore 238895
18
+ - 15 Rue de la Paix/75002/France
19
+ - NY, 5th Avenue and 57th Street
20
+ - source_sentence: 1 Raffles Place, One Raffles Place, Singapore 048616
21
+ sentences:
22
+ - 1 Raffles Place, Singapore 048616
23
+ - Madrid 28001 Spain Calle Serrano 30
24
+ - Kurfürstendamm 185/10707 Berlin/Germany
25
+ - source_sentence: Kurfürstendamm 207-208, 10719 Berlin, Germany
26
+ sentences:
27
+ - Argentina CABA C1073ABA 1925 Avenida 9 de Julio
28
+ - Kurfürstendamm ๒๐๗-๒๐๘, ๑๐๗๑๙ Berlin, Germany
29
+ - 123 Main St, Anytown, AB T1A 1A1
30
+ - source_sentence: Via Tornabuoni, 50123 Firenze FI, Italy
31
+ sentences:
32
+ - Hamngatan 18-20, Stockholm, Sweden
33
+ - 1 Florida, Argentina
34
+ - Tornabuoni St, 50123 Italy
35
+ - source_sentence: Nanjing Road Pedestrian Street, Huangpu, Shanghai 200001, China
36
+ sentences:
37
+ - Nanjing Rd Ped St, Huangpu Dist, Shanghai, China
38
+ - 5 Rue du Faubourg Saint-Honoré, Paris, France
39
+ - 6 Place d'Italie, Paris
40
+ ---
41
+
42
+ # SentenceTransformer based on pawan2411/address_net
43
+
44
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [pawan2411/address_net](https://huggingface.co/pawan2411/address_net). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
45
+
46
+ ## Model Details
47
+
48
+ ### Model Description
49
+ - **Model Type:** Sentence Transformer
50
+ - **Base model:** [pawan2411/address_net](https://huggingface.co/pawan2411/address_net) <!-- at revision 59a25ad94c91cf025ae8d44f21e404c387065b4b -->
51
+ - **Maximum Sequence Length:** 512 tokens
52
+ - **Output Dimensionality:** 768 tokens
53
+ - **Similarity Function:** Cosine Similarity
54
+ <!-- - **Training Dataset:** Unknown -->
55
+ <!-- - **Language:** Unknown -->
56
+ <!-- - **License:** Unknown -->
57
+
58
+ ### Model Sources
59
+
60
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
61
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
62
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
63
+
64
+ ### Full Model Architecture
65
+
66
+ ```
67
+ SentenceTransformer(
68
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel
69
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
70
+ )
71
+ ```
72
+
73
+ ## Usage
74
+
75
+ ### Direct Usage (Sentence Transformers)
76
+
77
+ First install the Sentence Transformers library:
78
+
79
+ ```bash
80
+ pip install -U sentence-transformers
81
+ ```
82
+
83
+ Then you can load this model and run inference.
84
+ ```python
85
+ from sentence_transformers import SentenceTransformer
86
+
87
+ # Download from the 🤗 Hub
88
+ model = SentenceTransformer("pawan2411/address-emnet")
89
+ # Run inference
90
+ sentences = [
91
+ 'Nanjing Road Pedestrian Street, Huangpu, Shanghai 200001, China',
92
+ 'Nanjing Rd Ped St, Huangpu Dist, Shanghai, China',
93
+ "6 Place d'Italie, Paris",
94
+ ]
95
+ embeddings = model.encode(sentences)
96
+ print(embeddings.shape)
97
+ # [3, 768]
98
+
99
+ # Get the similarity scores for the embeddings
100
+ similarities = model.similarity(embeddings, embeddings)
101
+ print(similarities.shape)
102
+ # [3, 3]
103
+ ```
104
+
105
+ <!--
106
+ ### Direct Usage (Transformers)
107
+
108
+ <details><summary>Click to see the direct usage in Transformers</summary>
109
+
110
+ </details>
111
+ -->
112
+
113
+ <!--
114
+ ### Downstream Usage (Sentence Transformers)
115
+
116
+ You can finetune this model on your own dataset.
117
+
118
+ <details><summary>Click to expand</summary>
119
+
120
+ </details>
121
+ -->
122
+
123
+ <!--
124
+ ### Out-of-Scope Use
125
+
126
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
127
+ -->
128
+
129
+ <!--
130
+ ## Bias, Risks and Limitations
131
+
132
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
133
+ -->
134
+
135
+ <!--
136
+ ### Recommendations
137
+
138
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
139
+ -->
140
+
141
+ ## Training Details
142
+
143
+ ### Training Dataset
144
+
145
+ #### Unnamed Dataset
146
+
147
+
148
+ * Size: 4,008 training samples
149
+ * Columns: <code>sentence_0</code> and <code>sentence_1</code>
150
+ * Approximate statistics based on the first 1000 samples:
151
+ | | sentence_0 | sentence_1 |
152
+ |:--------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
153
+ | type | string | string |
154
+ | details | <ul><li>min: 10 tokens</li><li>mean: 16.73 tokens</li><li>max: 29 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 11.4 tokens</li><li>max: 27 tokens</li></ul> |
155
+ * Samples:
156
+ | sentence_0 | sentence_1 |
157
+ |:------------------------------------------------------------------------------------|:------------------------------------------------|
158
+ | <code>1-7-1 Konan, Minato City, Tokyo 108-0075, Japan</code> | <code>1-7-1 Konan, Tokyo 108-0075, Japan</code> |
159
+ | <code>Avenida Paulista, 1000 - Bela Vista, São Paulo - SP, 01310-100, Brazil</code> | <code>Bela Vista 01310-100</code> |
160
+ | <code>Strada Lipscani 25, București 030031, Romania</code> | <code>Strada Lipscani București</code> |
161
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
162
+ ```json
163
+ {
164
+ "scale": 20.0,
165
+ "similarity_fct": "cos_sim"
166
+ }
167
+ ```
168
+
169
+ ### Training Hyperparameters
170
+ #### Non-Default Hyperparameters
171
+
172
+ - `per_device_train_batch_size`: 64
173
+ - `per_device_eval_batch_size`: 64
174
+ - `num_train_epochs`: 100
175
+ - `multi_dataset_batch_sampler`: round_robin
176
+
177
+ #### All Hyperparameters
178
+ <details><summary>Click to expand</summary>
179
+
180
+ - `overwrite_output_dir`: False
181
+ - `do_predict`: False
182
+ - `eval_strategy`: no
183
+ - `prediction_loss_only`: True
184
+ - `per_device_train_batch_size`: 64
185
+ - `per_device_eval_batch_size`: 64
186
+ - `per_gpu_train_batch_size`: None
187
+ - `per_gpu_eval_batch_size`: None
188
+ - `gradient_accumulation_steps`: 1
189
+ - `eval_accumulation_steps`: None
190
+ - `learning_rate`: 5e-05
191
+ - `weight_decay`: 0.0
192
+ - `adam_beta1`: 0.9
193
+ - `adam_beta2`: 0.999
194
+ - `adam_epsilon`: 1e-08
195
+ - `max_grad_norm`: 1
196
+ - `num_train_epochs`: 100
197
+ - `max_steps`: -1
198
+ - `lr_scheduler_type`: linear
199
+ - `lr_scheduler_kwargs`: {}
200
+ - `warmup_ratio`: 0.0
201
+ - `warmup_steps`: 0
202
+ - `log_level`: passive
203
+ - `log_level_replica`: warning
204
+ - `log_on_each_node`: True
205
+ - `logging_nan_inf_filter`: True
206
+ - `save_safetensors`: True
207
+ - `save_on_each_node`: False
208
+ - `save_only_model`: False
209
+ - `restore_callback_states_from_checkpoint`: False
210
+ - `no_cuda`: False
211
+ - `use_cpu`: False
212
+ - `use_mps_device`: False
213
+ - `seed`: 42
214
+ - `data_seed`: None
215
+ - `jit_mode_eval`: False
216
+ - `use_ipex`: False
217
+ - `bf16`: False
218
+ - `fp16`: False
219
+ - `fp16_opt_level`: O1
220
+ - `half_precision_backend`: auto
221
+ - `bf16_full_eval`: False
222
+ - `fp16_full_eval`: False
223
+ - `tf32`: None
224
+ - `local_rank`: 0
225
+ - `ddp_backend`: None
226
+ - `tpu_num_cores`: None
227
+ - `tpu_metrics_debug`: False
228
+ - `debug`: []
229
+ - `dataloader_drop_last`: False
230
+ - `dataloader_num_workers`: 0
231
+ - `dataloader_prefetch_factor`: None
232
+ - `past_index`: -1
233
+ - `disable_tqdm`: False
234
+ - `remove_unused_columns`: True
235
+ - `label_names`: None
236
+ - `load_best_model_at_end`: False
237
+ - `ignore_data_skip`: False
238
+ - `fsdp`: []
239
+ - `fsdp_min_num_params`: 0
240
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
241
+ - `fsdp_transformer_layer_cls_to_wrap`: None
242
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
243
+ - `deepspeed`: None
244
+ - `label_smoothing_factor`: 0.0
245
+ - `optim`: adamw_torch
246
+ - `optim_args`: None
247
+ - `adafactor`: False
248
+ - `group_by_length`: False
249
+ - `length_column_name`: length
250
+ - `ddp_find_unused_parameters`: None
251
+ - `ddp_bucket_cap_mb`: None
252
+ - `ddp_broadcast_buffers`: False
253
+ - `dataloader_pin_memory`: True
254
+ - `dataloader_persistent_workers`: False
255
+ - `skip_memory_metrics`: True
256
+ - `use_legacy_prediction_loop`: False
257
+ - `push_to_hub`: False
258
+ - `resume_from_checkpoint`: None
259
+ - `hub_model_id`: None
260
+ - `hub_strategy`: every_save
261
+ - `hub_private_repo`: False
262
+ - `hub_always_push`: False
263
+ - `gradient_checkpointing`: False
264
+ - `gradient_checkpointing_kwargs`: None
265
+ - `include_inputs_for_metrics`: False
266
+ - `eval_do_concat_batches`: True
267
+ - `fp16_backend`: auto
268
+ - `push_to_hub_model_id`: None
269
+ - `push_to_hub_organization`: None
270
+ - `mp_parameters`:
271
+ - `auto_find_batch_size`: False
272
+ - `full_determinism`: False
273
+ - `torchdynamo`: None
274
+ - `ray_scope`: last
275
+ - `ddp_timeout`: 1800
276
+ - `torch_compile`: False
277
+ - `torch_compile_backend`: None
278
+ - `torch_compile_mode`: None
279
+ - `dispatch_batches`: None
280
+ - `split_batches`: None
281
+ - `include_tokens_per_second`: False
282
+ - `include_num_input_tokens_seen`: False
283
+ - `neftune_noise_alpha`: None
284
+ - `optim_target_modules`: None
285
+ - `batch_eval_metrics`: False
286
+ - `eval_on_start`: False
287
+ - `batch_sampler`: batch_sampler
288
+ - `multi_dataset_batch_sampler`: round_robin
289
+
290
+ </details>
291
+
292
+ ### Training Logs
293
+ | Epoch | Step | Training Loss |
294
+ |:-------:|:----:|:-------------:|
295
+ | 7.9365 | 500 | 0.3678 |
296
+ | 15.8730 | 1000 | 0.2528 |
297
+ | 7.9365 | 500 | 0.262 |
298
+ | 15.8730 | 1000 | 0.2285 |
299
+ | 7.9365 | 500 | 0.1628 |
300
+ | 15.8730 | 1000 | 0.1807 |
301
+
302
+
303
+ ### Framework Versions
304
+ - Python: 3.10.12
305
+ - Sentence Transformers: 3.0.1
306
+ - Transformers: 4.42.4
307
+ - PyTorch: 2.3.1+cu121
308
+ - Accelerate: 0.32.1
309
+ - Datasets: 2.20.0
310
+ - Tokenizers: 0.19.1
311
+
312
+ ## Citation
313
+
314
+ ### BibTeX
315
+
316
+ #### Sentence Transformers
317
+ ```bibtex
318
+ @inproceedings{reimers-2019-sentence-bert,
319
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
320
+ author = "Reimers, Nils and Gurevych, Iryna",
321
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
322
+ month = "11",
323
+ year = "2019",
324
+ publisher = "Association for Computational Linguistics",
325
+ url = "https://arxiv.org/abs/1908.10084",
326
+ }
327
+ ```
328
+
329
+ #### MultipleNegativesRankingLoss
330
+ ```bibtex
331
+ @misc{henderson2017efficient,
332
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
333
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
334
+ year={2017},
335
+ eprint={1705.00652},
336
+ archivePrefix={arXiv},
337
+ primaryClass={cs.CL}
338
+ }
339
+ ```
340
+
341
+ <!--
342
+ ## Glossary
343
+
344
+ *Clearly define terms in order to be accessible across audiences.*
345
+ -->
346
+
347
+ <!--
348
+ ## Model Card Authors
349
+
350
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
351
+ -->
352
+
353
+ <!--
354
+ ## Model Card Contact
355
+
356
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
357
+ -->
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "pawan2411/address_net",
3
+ "architectures": [
4
+ "MPNetModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-05,
15
+ "max_position_embeddings": 514,
16
+ "model_type": "mpnet",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 1,
20
+ "relative_attention_num_buckets": 32,
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.42.4",
23
+ "vocab_size": 30527
24
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.42.4",
5
+ "pytorch": "2.3.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ffee574c4d0385d27bdaa80091fccea44e73dd784fc1d1535b7eac0d0f8663d5
3
+ size 437967672
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": true,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "104": {
36
+ "content": "[UNK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "30526": {
44
+ "content": "<mask>",
45
+ "lstrip": true,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ }
51
+ },
52
+ "bos_token": "<s>",
53
+ "clean_up_tokenization_spaces": true,
54
+ "cls_token": "<s>",
55
+ "do_lower_case": true,
56
+ "eos_token": "</s>",
57
+ "mask_token": "<mask>",
58
+ "max_length": 512,
59
+ "model_max_length": 512,
60
+ "pad_to_multiple_of": null,
61
+ "pad_token": "<pad>",
62
+ "pad_token_type_id": 0,
63
+ "padding_side": "right",
64
+ "sep_token": "</s>",
65
+ "stride": 0,
66
+ "strip_accents": null,
67
+ "tokenize_chinese_chars": true,
68
+ "tokenizer_class": "MPNetTokenizer",
69
+ "truncation_side": "right",
70
+ "truncation_strategy": "longest_first",
71
+ "unk_token": "[UNK]"
72
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff