pczarnik commited on
Commit
0f52716
1 Parent(s): b57ec97

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +79 -68
README.md CHANGED
@@ -1,80 +1,91 @@
1
  ---
 
 
 
2
  datasets:
3
  - wikiann
4
- language:
5
- - pl
6
- pipeline_tag: token-classification
7
- license: mit
8
- widget:
9
- - text: "Jestem Krzysiek i pracuję w Ministerstwie Sportu"
10
- - text: "Wiktoria pracuje w Krakowie, na AGH"
11
- - text: "Nazywam się Grzegorz Jasiński, pochodzę ze Szczebrzeszyna"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
  ---
 
 
 
 
13
  # herbert-base-ner
14
 
 
 
 
 
 
 
 
 
15
  ## Model description
16
 
17
- **herbert-base-ner** is a fine-tuned HerBERT model that can be used for **Named Entity Recognition** .
18
- It has been trained to recognize three types of entities: person (PER), location (LOC) and organization (ORG).
19
 
20
- Specifically, this model is an *allegro/herbert-base-cased* model that was fine-tuned on the Polish subset of *wikiann* dataset.
21
 
 
22
 
23
- ## Intended uses & limitations
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24
 
25
- #### How to use
26
-
27
- You can use this model with Transformers *pipeline* for NER.
28
-
29
- ```python
30
- from transformers import AutoTokenizer, AutoModelForTokenClassification
31
- from transformers import pipeline
32
-
33
- tokenizer = AutoTokenizer.from_pretrained("pietruszkowiec/herbert-base-ner")
34
- model = AutoModelForTokenClassification.from_pretrained("pietruszkowiec/herbert-base-ner")
35
-
36
- nlp = pipeline("ner", model=model, tokenizer=tokenizer)
37
- example = "Nazywam się Grzegorz Jasiński, pochodzę ze Szczebrzeszyna"
38
-
39
- ner_results = nlp(example)
40
- print(ner_results)
41
- ```
42
-
43
- ### BibTeX entry and citation info
44
-
45
- ```
46
- @inproceedings{mroczkowski-etal-2021-herbert,
47
- title = "{H}er{BERT}: Efficiently Pretrained Transformer-based Language Model for {P}olish",
48
- author = "Mroczkowski, Robert and
49
- Rybak, Piotr and
50
- Wr{\\'o}blewska, Alina and
51
- Gawlik, Ireneusz",
52
- booktitle = "Proceedings of the 8th Workshop on Balto-Slavic Natural Language Processing",
53
- month = apr,
54
- year = "2021",
55
- address = "Kiyv, Ukraine",
56
- publisher = "Association for Computational Linguistics",
57
- url = "https://www.aclweb.org/anthology/2021.bsnlp-1.1",
58
- pages = "1--10",
59
- }
60
- ```
61
- ```
62
- @inproceedings{pan-etal-2017-cross,
63
- title = "Cross-lingual Name Tagging and Linking for 282 Languages",
64
- author = "Pan, Xiaoman and
65
- Zhang, Boliang and
66
- May, Jonathan and
67
- Nothman, Joel and
68
- Knight, Kevin and
69
- Ji, Heng",
70
- booktitle = "Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
71
- month = jul,
72
- year = "2017",
73
- address = "Vancouver, Canada",
74
- publisher = "Association for Computational Linguistics",
75
- url = "https://www.aclweb.org/anthology/P17-1178",
76
- doi = "10.18653/v1/P17-1178",
77
- pages = "1946--1958",
78
- abstract = "The ambitious goal of this work is to develop a cross-lingual name tagging and linking framework for 282 languages that exist in Wikipedia. Given a document in any of these languages, our framework is able to identify name mentions, assign a coarse-grained or fine-grained type to each mention, and link it to an English Knowledge Base (KB) if it is linkable. We achieve this goal by performing a series of new KB mining methods: generating {``}silver-standard{''} annotations by transferring annotations from English to other languages through cross-lingual links and KB properties, refining annotations through self-training and topic selection, deriving language-specific morphology features from anchor links, and mining word translation pairs from cross-lingual links. Both name tagging and linking results for 282 languages are promising on Wikipedia data and on-Wikipedia data.",
79
- }
80
- ```
 
1
  ---
2
+ license: cc-by-4.0
3
+ tags:
4
+ - generated_from_trainer
5
  datasets:
6
  - wikiann
7
+ metrics:
8
+ - precision
9
+ - recall
10
+ - f1
11
+ - accuracy
12
+ model-index:
13
+ - name: herbert-base-ner
14
+ results:
15
+ - task:
16
+ name: Token Classification
17
+ type: token-classification
18
+ dataset:
19
+ name: wikiann
20
+ type: wikiann
21
+ config: pl
22
+ split: validation
23
+ args: pl
24
+ metrics:
25
+ - name: Precision
26
+ type: precision
27
+ value: 0.8885878330430295
28
+ - name: Recall
29
+ type: recall
30
+ value: 0.905945803735859
31
+ - name: F1
32
+ type: f1
33
+ value: 0.8971828692395376
34
+ - name: Accuracy
35
+ type: accuracy
36
+ value: 0.9568532096363909
37
  ---
38
+
39
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
40
+ should probably proofread and complete it, then remove this comment. -->
41
+
42
  # herbert-base-ner
43
 
44
+ This model is a fine-tuned version of [allegro/herbert-base-cased](https://huggingface.co/allegro/herbert-base-cased) on the wikiann dataset.
45
+ It achieves the following results on the evaluation set:
46
+ - Loss: 0.2006
47
+ - Precision: 0.8886
48
+ - Recall: 0.9059
49
+ - F1: 0.8972
50
+ - Accuracy: 0.9569
51
+
52
  ## Model description
53
 
54
+ More information needed
 
55
 
56
+ ## Intended uses & limitations
57
 
58
+ More information needed
59
 
60
+ ## Training and evaluation data
61
+
62
+ More information needed
63
+
64
+ ## Training procedure
65
+
66
+ ### Training hyperparameters
67
+
68
+ The following hyperparameters were used during training:
69
+ - learning_rate: 1e-05
70
+ - train_batch_size: 8
71
+ - eval_batch_size: 8
72
+ - seed: 42
73
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
74
+ - lr_scheduler_type: linear
75
+ - num_epochs: 3
76
+
77
+ ### Training results
78
+
79
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
80
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
81
+ | 0.207 | 1.0 | 2500 | 0.1929 | 0.8566 | 0.8884 | 0.8722 | 0.9499 |
82
+ | 0.1528 | 2.0 | 5000 | 0.1979 | 0.8807 | 0.9006 | 0.8905 | 0.9547 |
83
+ | 0.1195 | 3.0 | 7500 | 0.2006 | 0.8886 | 0.9059 | 0.8972 | 0.9569 |
84
+
85
+
86
+ ### Framework versions
87
 
88
+ - Transformers 4.29.2
89
+ - Pytorch 2.0.1+cu118
90
+ - Datasets 2.12.0
91
+ - Tokenizers 0.13.3