update model card README.md
Browse files
README.md
CHANGED
@@ -1,80 +1,91 @@
|
|
1 |
---
|
|
|
|
|
|
|
2 |
datasets:
|
3 |
- wikiann
|
4 |
-
|
5 |
-
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
-
|
10 |
-
-
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
---
|
|
|
|
|
|
|
|
|
13 |
# herbert-base-ner
|
14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
## Model description
|
16 |
|
17 |
-
|
18 |
-
It has been trained to recognize three types of entities: person (PER), location (LOC) and organization (ORG).
|
19 |
|
20 |
-
|
21 |
|
|
|
22 |
|
23 |
-
##
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
```python
|
30 |
-
from transformers import AutoTokenizer, AutoModelForTokenClassification
|
31 |
-
from transformers import pipeline
|
32 |
-
|
33 |
-
tokenizer = AutoTokenizer.from_pretrained("pietruszkowiec/herbert-base-ner")
|
34 |
-
model = AutoModelForTokenClassification.from_pretrained("pietruszkowiec/herbert-base-ner")
|
35 |
-
|
36 |
-
nlp = pipeline("ner", model=model, tokenizer=tokenizer)
|
37 |
-
example = "Nazywam się Grzegorz Jasiński, pochodzę ze Szczebrzeszyna"
|
38 |
-
|
39 |
-
ner_results = nlp(example)
|
40 |
-
print(ner_results)
|
41 |
-
```
|
42 |
-
|
43 |
-
### BibTeX entry and citation info
|
44 |
-
|
45 |
-
```
|
46 |
-
@inproceedings{mroczkowski-etal-2021-herbert,
|
47 |
-
title = "{H}er{BERT}: Efficiently Pretrained Transformer-based Language Model for {P}olish",
|
48 |
-
author = "Mroczkowski, Robert and
|
49 |
-
Rybak, Piotr and
|
50 |
-
Wr{\\'o}blewska, Alina and
|
51 |
-
Gawlik, Ireneusz",
|
52 |
-
booktitle = "Proceedings of the 8th Workshop on Balto-Slavic Natural Language Processing",
|
53 |
-
month = apr,
|
54 |
-
year = "2021",
|
55 |
-
address = "Kiyv, Ukraine",
|
56 |
-
publisher = "Association for Computational Linguistics",
|
57 |
-
url = "https://www.aclweb.org/anthology/2021.bsnlp-1.1",
|
58 |
-
pages = "1--10",
|
59 |
-
}
|
60 |
-
```
|
61 |
-
```
|
62 |
-
@inproceedings{pan-etal-2017-cross,
|
63 |
-
title = "Cross-lingual Name Tagging and Linking for 282 Languages",
|
64 |
-
author = "Pan, Xiaoman and
|
65 |
-
Zhang, Boliang and
|
66 |
-
May, Jonathan and
|
67 |
-
Nothman, Joel and
|
68 |
-
Knight, Kevin and
|
69 |
-
Ji, Heng",
|
70 |
-
booktitle = "Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
|
71 |
-
month = jul,
|
72 |
-
year = "2017",
|
73 |
-
address = "Vancouver, Canada",
|
74 |
-
publisher = "Association for Computational Linguistics",
|
75 |
-
url = "https://www.aclweb.org/anthology/P17-1178",
|
76 |
-
doi = "10.18653/v1/P17-1178",
|
77 |
-
pages = "1946--1958",
|
78 |
-
abstract = "The ambitious goal of this work is to develop a cross-lingual name tagging and linking framework for 282 languages that exist in Wikipedia. Given a document in any of these languages, our framework is able to identify name mentions, assign a coarse-grained or fine-grained type to each mention, and link it to an English Knowledge Base (KB) if it is linkable. We achieve this goal by performing a series of new KB mining methods: generating {``}silver-standard{''} annotations by transferring annotations from English to other languages through cross-lingual links and KB properties, refining annotations through self-training and topic selection, deriving language-specific morphology features from anchor links, and mining word translation pairs from cross-lingual links. Both name tagging and linking results for 282 languages are promising on Wikipedia data and on-Wikipedia data.",
|
79 |
-
}
|
80 |
-
```
|
|
|
1 |
---
|
2 |
+
license: cc-by-4.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
datasets:
|
6 |
- wikiann
|
7 |
+
metrics:
|
8 |
+
- precision
|
9 |
+
- recall
|
10 |
+
- f1
|
11 |
+
- accuracy
|
12 |
+
model-index:
|
13 |
+
- name: herbert-base-ner
|
14 |
+
results:
|
15 |
+
- task:
|
16 |
+
name: Token Classification
|
17 |
+
type: token-classification
|
18 |
+
dataset:
|
19 |
+
name: wikiann
|
20 |
+
type: wikiann
|
21 |
+
config: pl
|
22 |
+
split: validation
|
23 |
+
args: pl
|
24 |
+
metrics:
|
25 |
+
- name: Precision
|
26 |
+
type: precision
|
27 |
+
value: 0.8885878330430295
|
28 |
+
- name: Recall
|
29 |
+
type: recall
|
30 |
+
value: 0.905945803735859
|
31 |
+
- name: F1
|
32 |
+
type: f1
|
33 |
+
value: 0.8971828692395376
|
34 |
+
- name: Accuracy
|
35 |
+
type: accuracy
|
36 |
+
value: 0.9568532096363909
|
37 |
---
|
38 |
+
|
39 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
40 |
+
should probably proofread and complete it, then remove this comment. -->
|
41 |
+
|
42 |
# herbert-base-ner
|
43 |
|
44 |
+
This model is a fine-tuned version of [allegro/herbert-base-cased](https://huggingface.co/allegro/herbert-base-cased) on the wikiann dataset.
|
45 |
+
It achieves the following results on the evaluation set:
|
46 |
+
- Loss: 0.2006
|
47 |
+
- Precision: 0.8886
|
48 |
+
- Recall: 0.9059
|
49 |
+
- F1: 0.8972
|
50 |
+
- Accuracy: 0.9569
|
51 |
+
|
52 |
## Model description
|
53 |
|
54 |
+
More information needed
|
|
|
55 |
|
56 |
+
## Intended uses & limitations
|
57 |
|
58 |
+
More information needed
|
59 |
|
60 |
+
## Training and evaluation data
|
61 |
+
|
62 |
+
More information needed
|
63 |
+
|
64 |
+
## Training procedure
|
65 |
+
|
66 |
+
### Training hyperparameters
|
67 |
+
|
68 |
+
The following hyperparameters were used during training:
|
69 |
+
- learning_rate: 1e-05
|
70 |
+
- train_batch_size: 8
|
71 |
+
- eval_batch_size: 8
|
72 |
+
- seed: 42
|
73 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
74 |
+
- lr_scheduler_type: linear
|
75 |
+
- num_epochs: 3
|
76 |
+
|
77 |
+
### Training results
|
78 |
+
|
79 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
80 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
81 |
+
| 0.207 | 1.0 | 2500 | 0.1929 | 0.8566 | 0.8884 | 0.8722 | 0.9499 |
|
82 |
+
| 0.1528 | 2.0 | 5000 | 0.1979 | 0.8807 | 0.9006 | 0.8905 | 0.9547 |
|
83 |
+
| 0.1195 | 3.0 | 7500 | 0.2006 | 0.8886 | 0.9059 | 0.8972 | 0.9569 |
|
84 |
+
|
85 |
+
|
86 |
+
### Framework versions
|
87 |
|
88 |
+
- Transformers 4.29.2
|
89 |
+
- Pytorch 2.0.1+cu118
|
90 |
+
- Datasets 2.12.0
|
91 |
+
- Tokenizers 0.13.3
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|