pietruszkowiec commited on
Commit
5549d73
1 Parent(s): 04f0eb2

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +70 -1
README.md CHANGED
@@ -4,4 +4,73 @@ datasets:
4
  language:
5
  - pl
6
  pipeline_tag: token-classification
7
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  language:
5
  - pl
6
  pipeline_tag: token-classification
7
+ license: mit
8
+ ---
9
+ # herbert-base-ner
10
+
11
+ ## Model description
12
+
13
+ **herbert-base-ner** is a fine-tuned HerBERT model that can be used for **Named Entity Recognition** .
14
+ It has been trained to recognize three types of entities: person (PER), location (LOC) and organization (ORG).
15
+
16
+ Specifically, this model is an *allegro/herbert-base-cased* model that was fine-tuned on the Polish subset of *wikiann* dataset.
17
+
18
+
19
+ ## Intended uses & limitations
20
+
21
+ #### How to use
22
+
23
+ You can use this model with Transformers *pipeline* for NER.
24
+
25
+ ```python
26
+ from transformers import AutoTokenizer, AutoModelForTokenClassification
27
+ from transformers import pipeline
28
+
29
+ tokenizer = AutoTokenizer.from_pretrained("pietruszkowiec/herbert-base-ner")
30
+ model = AutoModelForTokenClassification.from_pretrained("pietruszkowiec/herbert-base-ner")
31
+
32
+ nlp = pipeline("ner", model=model, tokenizer=tokenizer)
33
+ example = "Nazywam się Grzegorz Brzęszczyszczykiewicz, pochodzę z Chrząszczyżewoszczyc"
34
+
35
+ ner_results = nlp(example)
36
+ print(ner_results)
37
+ ```
38
+
39
+ ### BibTeX entry and citation info
40
+
41
+ ```
42
+ @inproceedings{mroczkowski-etal-2021-herbert,
43
+ title = "{H}er{BERT}: Efficiently Pretrained Transformer-based Language Model for {P}olish",
44
+ author = "Mroczkowski, Robert and
45
+ Rybak, Piotr and
46
+ Wr{\\'o}blewska, Alina and
47
+ Gawlik, Ireneusz",
48
+ booktitle = "Proceedings of the 8th Workshop on Balto-Slavic Natural Language Processing",
49
+ month = apr,
50
+ year = "2021",
51
+ address = "Kiyv, Ukraine",
52
+ publisher = "Association for Computational Linguistics",
53
+ url = "https://www.aclweb.org/anthology/2021.bsnlp-1.1",
54
+ pages = "1--10",
55
+ }
56
+ ```
57
+ ```
58
+ @inproceedings{pan-etal-2017-cross,
59
+ title = "Cross-lingual Name Tagging and Linking for 282 Languages",
60
+ author = "Pan, Xiaoman and
61
+ Zhang, Boliang and
62
+ May, Jonathan and
63
+ Nothman, Joel and
64
+ Knight, Kevin and
65
+ Ji, Heng",
66
+ booktitle = "Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
67
+ month = jul,
68
+ year = "2017",
69
+ address = "Vancouver, Canada",
70
+ publisher = "Association for Computational Linguistics",
71
+ url = "https://www.aclweb.org/anthology/P17-1178",
72
+ doi = "10.18653/v1/P17-1178",
73
+ pages = "1946--1958",
74
+ abstract = "The ambitious goal of this work is to develop a cross-lingual name tagging and linking framework for 282 languages that exist in Wikipedia. Given a document in any of these languages, our framework is able to identify name mentions, assign a coarse-grained or fine-grained type to each mention, and link it to an English Knowledge Base (KB) if it is linkable. We achieve this goal by performing a series of new KB mining methods: generating {``}silver-standard{''} annotations by transferring annotations from English to other languages through cross-lingual links and KB properties, refining annotations through self-training and topic selection, deriving language-specific morphology features from anchor links, and mining word translation pairs from cross-lingual links. Both name tagging and linking results for 282 languages are promising on Wikipedia data and on-Wikipedia data.",
75
+ }
76
+ ```