--- license: apache-2.0 base_model: google/mt5-small tags: - summarization - generated_from_trainer metrics: - rouge model-index: - name: mt5-small-finetuned-mt5-small-v2 results: [] --- # mt5-small-finetuned-mt5-small-v2 This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.3614 - Rouge1: 0.1151 - Rouge2: 0.0251 - Rougel: 0.1143 - Rougelsum: 0.1144 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 16 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:------:|:---------------:|:------:|:------:|:------:|:---------:| | 3.5787 | 1.0 | 12500 | 2.7685 | 0.0863 | 0.0192 | 0.0858 | 0.0857 | | 3.036 | 2.0 | 25000 | 2.6270 | 0.0911 | 0.0203 | 0.0905 | 0.0905 | | 2.8761 | 3.0 | 37500 | 2.5564 | 0.101 | 0.0233 | 0.1004 | 0.1004 | | 2.7709 | 4.0 | 50000 | 2.5080 | 0.1034 | 0.0231 | 0.1028 | 0.1028 | | 2.6959 | 5.0 | 62500 | 2.4671 | 0.1068 | 0.0235 | 0.1061 | 0.1062 | | 2.6328 | 6.0 | 75000 | 2.4539 | 0.11 | 0.026 | 0.1093 | 0.1093 | | 2.5839 | 7.0 | 87500 | 2.4302 | 0.1101 | 0.0261 | 0.1092 | 0.1093 | | 2.5418 | 8.0 | 100000 | 2.4083 | 0.1113 | 0.0252 | 0.1106 | 0.1108 | | 2.5067 | 9.0 | 112500 | 2.3999 | 0.1115 | 0.0257 | 0.1107 | 0.1106 | | 2.4762 | 10.0 | 125000 | 2.3857 | 0.1161 | 0.0264 | 0.1153 | 0.1153 | | 2.4505 | 11.0 | 137500 | 2.3741 | 0.1141 | 0.0262 | 0.1133 | 0.1134 | | 2.4281 | 12.0 | 150000 | 2.3737 | 0.1153 | 0.0259 | 0.1146 | 0.1147 | | 2.4103 | 13.0 | 162500 | 2.3648 | 0.1156 | 0.0255 | 0.1148 | 0.1147 | | 2.3961 | 14.0 | 175000 | 2.3652 | 0.1131 | 0.0246 | 0.1123 | 0.1123 | | 2.3837 | 15.0 | 187500 | 2.3636 | 0.1141 | 0.0255 | 0.1133 | 0.1134 | | 2.3772 | 16.0 | 200000 | 2.3614 | 0.1151 | 0.0251 | 0.1143 | 0.1144 | ### Framework versions - Transformers 4.40.0 - Pytorch 2.1.0+cu118 - Datasets 2.19.0 - Tokenizers 0.19.1