peterdamn commited on
Commit
b7b165f
1 Parent(s): 7e0fcb0

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -4.31 +/- 1.79
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:30143f26c9a6b76f5986956b0d7ab0a74548845cc2c61f82243330a18327bfae
3
+ size 107773
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fc03217b040>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7fc032176e80>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "observation_space": {
23
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
24
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
25
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
26
+ "_shape": null,
27
+ "dtype": null,
28
+ "_np_random": null
29
+ },
30
+ "action_space": {
31
+ ":type:": "<class 'gym.spaces.box.Box'>",
32
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
33
+ "dtype": "float32",
34
+ "_shape": [
35
+ 3
36
+ ],
37
+ "low": "[-1. -1. -1.]",
38
+ "high": "[1. 1. 1.]",
39
+ "bounded_below": "[ True True True]",
40
+ "bounded_above": "[ True True True]",
41
+ "_np_random": null
42
+ },
43
+ "n_envs": 4,
44
+ "num_timesteps": 1000000,
45
+ "_total_timesteps": 1000000,
46
+ "_num_timesteps_at_start": 0,
47
+ "seed": null,
48
+ "action_noise": null,
49
+ "start_time": 1678873970167874476,
50
+ "learning_rate": 0.0007,
51
+ "tensorboard_log": null,
52
+ "lr_schedule": {
53
+ ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
+ },
56
+ "_last_obs": {
57
+ ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAZA3gPlyUhryBbA0/ZA3gPlyUhryBbA0/ZA3gPlyUhryBbA0/ZA3gPlyUhryBbA0/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA7OewPMbgiD5Uuto/mSmRv46qgr+vTVy/az+Mv8Cmtb/6Hgq/av3mPizTJj28aPg9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABkDeA+XJSGvIFsDT+qFkm86crRuh8tALxkDeA+XJSGvIFsDT+qFkm86crRuh8tALxkDeA+XJSGvIFsDT+qFkm86crRuh8tALxkDeA+XJSGvIFsDT+qFkm86crRuh8tALyUaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[ 0.43760216 -0.01642817 0.5524369 ]\n [ 0.43760216 -0.01642817 0.5524369 ]\n [ 0.43760216 -0.01642817 0.5524369 ]\n [ 0.43760216 -0.01642817 0.5524369 ]]",
60
+ "desired_goal": "[[ 0.02159496 0.2673399 1.7088113 ]\n [-1.134082 -1.0208299 -0.86056036]\n [-1.0956854 -1.4191513 -0.53953516]\n [ 0.45115215 0.04072873 0.12129351]]",
61
+ "observation": "[[ 0.43760216 -0.01642817 0.5524369 -0.01227347 -0.00160059 -0.00782326]\n [ 0.43760216 -0.01642817 0.5524369 -0.01227347 -0.00160059 -0.00782326]\n [ 0.43760216 -0.01642817 0.5524369 -0.01227347 -0.00160059 -0.00782326]\n [ 0.43760216 -0.01642817 0.5524369 -0.01227347 -0.00160059 -0.00782326]]"
62
+ },
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
66
+ },
67
+ "_last_original_obs": {
68
+ ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAALXXwPVjJ972x2x48Mf0NPs7Ld704g5A+YQ6HPf087T3rW3k88PIXvt/Ewz3Wkg89lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[ 0.117411 -0.1209895 0.00969593]\n [ 0.13866116 -0.0604971 0.28225112]\n [ 0.06594539 0.11583898 0.01521967]\n [-0.14838767 0.09559035 0.03505214]]",
72
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
+ },
74
+ "_episode_num": 0,
75
+ "use_sde": false,
76
+ "sde_sample_freq": -1,
77
+ "_current_progress_remaining": 0.0,
78
+ "ep_info_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIZsBZSpYTDcCUhpRSlIwBbJRLMowBdJRHQKnuH1nuiN91fZQoaAZoCWgPQwhVh9wMN+ALwJSGlFKUaBVLMmgWR0Cp7ZVurIYFdX2UKGgGaAloD0MIibZj6q7MDMCUhpRSlGgVSzJoFkdAqe0P531SO3V9lChoBmgJaA9DCPYoXI/CxRXAlIaUUpRoFUsyaBZHQKnsl2X9itt1fZQoaAZoCWgPQwhDBBxCldoYwJSGlFKUaBVLMmgWR0Cp7zEDIRywdX2UKGgGaAloD0MIHEMAcOxZCMCUhpRSlGgVSzJoFkdAqe6m7+T/yXV9lChoBmgJaA9DCJF7urpjkQjAlIaUUpRoFUsyaBZHQKnuIZVGTcJ1fZQoaAZoCWgPQwiuKZDZWXQWwJSGlFKUaBVLMmgWR0Cp7ajZ13dLdX2UKGgGaAloD0MIrUuN0M9UDMCUhpRSlGgVSzJoFkdAqfBABJZntnV9lChoBmgJaA9DCOJ0kq0uJw7AlIaUUpRoFUsyaBZHQKnvteu3c591fZQoaAZoCWgPQwiM8zehEAEcwJSGlFKUaBVLMmgWR0Cp7zBcZ9/jdX2UKGgGaAloD0MI36gVpu8VBsCUhpRSlGgVSzJoFkdAqe63m9xp+XV9lChoBmgJaA9DCBFzSdV2wyDAlIaUUpRoFUsyaBZHQKnxTCojv/l1fZQoaAZoCWgPQwjcuTDSi6ocwJSGlFKUaBVLMmgWR0Cp8MI2wV0tdX2UKGgGaAloD0MIKjdRS3NrFMCUhpRSlGgVSzJoFkdAqfA8nmaH9HV9lChoBmgJaA9DCPYNTG4UKRTAlIaUUpRoFUsyaBZHQKnvw9V3ljp1fZQoaAZoCWgPQwjbMXVXdkEOwJSGlFKUaBVLMmgWR0Cp8lGXXyy2dX2UKGgGaAloD0MIKENVTKUf+7+UhpRSlGgVSzJoFkdAqfHHlfZ26nV9lChoBmgJaA9DCDigpSvYJhPAlIaUUpRoFUsyaBZHQKnxQkDZDiR1fZQoaAZoCWgPQwg3T3XIzbAMwJSGlFKUaBVLMmgWR0Cp8Ml6Z6UrdX2UKGgGaAloD0MIQfUPIhky/r+UhpRSlGgVSzJoFkdAqfNuee4Cp3V9lChoBmgJaA9DCAlP6PUnARHAlIaUUpRoFUsyaBZHQKny5E/jbSJ1fZQoaAZoCWgPQwgeUDblCk8WwJSGlFKUaBVLMmgWR0Cp8l7SApazdX2UKGgGaAloD0MIQfLOoQyVEcCUhpRSlGgVSzJoFkdAqfHl+ocaO3V9lChoBmgJaA9DCCQqVDcXDxjAlIaUUpRoFUsyaBZHQKn0gYsunMt1fZQoaAZoCWgPQwgrMGR1q3cUwJSGlFKUaBVLMmgWR0Cp8/efh/AkdX2UKGgGaAloD0MIfy+FB81+GsCUhpRSlGgVSzJoFkdAqfNyWcBltnV9lChoBmgJaA9DCOhNRSqMXR7AlIaUUpRoFUsyaBZHQKny+ZTAFgV1fZQoaAZoCWgPQwirsYS1MWYXwJSGlFKUaBVLMmgWR0Cp9Y4f4h2XdX2UKGgGaAloD0MIHy3OGObECcCUhpRSlGgVSzJoFkdAqfUEGmk30nV9lChoBmgJaA9DCCHp0yr6IwrAlIaUUpRoFUsyaBZHQKn0foePq9p1fZQoaAZoCWgPQwiakxeZgI8TwJSGlFKUaBVLMmgWR0Cp9AXVTaTPdX2UKGgGaAloD0MISphp+1eWCMCUhpRSlGgVSzJoFkdAqfaWW0JF9nV9lChoBmgJaA9DCFVq9kAr0AvAlIaUUpRoFUsyaBZHQKn2DFDOTq11fZQoaAZoCWgPQwhiLNMvEZ8RwJSGlFKUaBVLMmgWR0Cp9YbPY4ACdX2UKGgGaAloD0MIBHXKoxthBMCUhpRSlGgVSzJoFkdAqfUOAAhjfHV9lChoBmgJaA9DCJG1hlJ7gRnAlIaUUpRoFUsyaBZHQKn3pV1fVqh1fZQoaAZoCWgPQwjDSC9q94sGwJSGlFKUaBVLMmgWR0Cp9xtHhCMQdX2UKGgGaAloD0MI+PnvwWs3CMCUhpRSlGgVSzJoFkdAqfaVs54nnnV9lChoBmgJaA9DCByWBn5UYwXAlIaUUpRoFUsyaBZHQKn2HO8kD6p1fZQoaAZoCWgPQwgld9hEZu4FwJSGlFKUaBVLMmgWR0Cp+LMoDxLCdX2UKGgGaAloD0MIfQkVHF5QD8CUhpRSlGgVSzJoFkdAqfgpC0F8onV9lChoBmgJaA9DCC5XPzbJzxjAlIaUUpRoFUsyaBZHQKn3o36Q/5d1fZQoaAZoCWgPQwie76fGSxcTwJSGlFKUaBVLMmgWR0Cp9yqbjLjhdX2UKGgGaAloD0MIN8e5TbiHE8CUhpRSlGgVSzJoFkdAqfoHlhgE2nV9lChoBmgJaA9DCI4HW+z2aRPAlIaUUpRoFUsyaBZHQKn5fhUipvR1fZQoaAZoCWgPQwjPZ0C9GfUDwJSGlFKUaBVLMmgWR0Cp+Pmgi/widX2UKGgGaAloD0MIg1FJnYCGAcCUhpRSlGgVSzJoFkdAqfiBwVCXyHV9lChoBmgJaA9DCCSYamYtRQTAlIaUUpRoFUsyaBZHQKn7vn13+uN1fZQoaAZoCWgPQwiRYRVvZH4EwJSGlFKUaBVLMmgWR0Cp+zVvddmhdX2UKGgGaAloD0MI7MGk+PgEDcCUhpRSlGgVSzJoFkdAqfqwoRZlnXV9lChoBmgJaA9DCP7UeOkmgRnAlIaUUpRoFUsyaBZHQKn6OH0se4l1fZQoaAZoCWgPQwis5jki36UFwJSGlFKUaBVLMmgWR0Cp/WsK9f1IdX2UKGgGaAloD0MIYi6p2m6CB8CUhpRSlGgVSzJoFkdAqfzh+OOsDHV9lChoBmgJaA9DCAADQYAMfQDAlIaUUpRoFUsyaBZHQKn8XWSU1Q91fZQoaAZoCWgPQwhtHofB/PUOwJSGlFKUaBVLMmgWR0Cp++VOj7AMdX2UKGgGaAloD0MIMA+Z8iGICMCUhpRSlGgVSzJoFkdAqf8wwoLG73V9lChoBmgJaA9DCGufjscMdAjAlIaUUpRoFUsyaBZHQKn+p5TIeYF1fZQoaAZoCWgPQwgSwTi4dGwEwJSGlFKUaBVLMmgWR0Cp/iLo4dZJdX2UKGgGaAloD0MITimvldA9DcCUhpRSlGgVSzJoFkdAqf2q7wrlNnV9lChoBmgJaA9DCJkrg2qD0wLAlIaUUpRoFUsyaBZHQKoBCmXw9aF1fZQoaAZoCWgPQwjP+L64VCUWwJSGlFKUaBVLMmgWR0CqAIEv9LpSdX2UKGgGaAloD0MIzm4tk+HIEsCUhpRSlGgVSzJoFkdAqf/8qBmPHXV9lChoBmgJaA9DCJtZSwFp3wjAlIaUUpRoFUsyaBZHQKn/hV/+bVl1fZQoaAZoCWgPQwh63o0FhUELwJSGlFKUaBVLMmgWR0CqAtfhMrVfdX2UKGgGaAloD0MI8nwG1JvxA8CUhpRSlGgVSzJoFkdAqgJOt4iX6nV9lChoBmgJaA9DCCzwFd16TRHAlIaUUpRoFUsyaBZHQKoByjdHlOp1fZQoaAZoCWgPQwguy9dl+K8PwJSGlFKUaBVLMmgWR0CqAVJcxCY1dX2UKGgGaAloD0MIN8E3TZ99CsCUhpRSlGgVSzJoFkdAqgSq6vq1PXV9lChoBmgJaA9DCM2RlV8GowbAlIaUUpRoFUsyaBZHQKoEIcn3L3d1fZQoaAZoCWgPQwiESIYcW88NwJSGlFKUaBVLMmgWR0CqA51FhG6PdX2UKGgGaAloD0MI0HtjCABeHcCUhpRSlGgVSzJoFkdAqgMlbX6InHV9lChoBmgJaA9DCKGhf4KLJRnAlIaUUpRoFUsyaBZHQKoGOCpWFOB1fZQoaAZoCWgPQwiMS1Xa4voYwJSGlFKUaBVLMmgWR0CqBa5Wq95AdX2UKGgGaAloD0MI+OKL9nixIMCUhpRSlGgVSzJoFkdAqgUo0VJti3V9lChoBmgJaA9DCHhDGhU4WQjAlIaUUpRoFUsyaBZHQKoEsAMlTm51fZQoaAZoCWgPQwg6PITx01gFwJSGlFKUaBVLMmgWR0CqB0SIP9UCdX2UKGgGaAloD0MIeCXJc31fEMCUhpRSlGgVSzJoFkdAqga6hBZ6lnV9lChoBmgJaA9DCDiCVIodbQnAlIaUUpRoFUsyaBZHQKoGNPwd8zB1fZQoaAZoCWgPQwgg0Jm0qRoIwJSGlFKUaBVLMmgWR0CqBbwwj+rEdX2UKGgGaAloD0MIMCsU6X6+GsCUhpRSlGgVSzJoFkdAqghRwhnrZHV9lChoBmgJaA9DCKM6Hch6WhbAlIaUUpRoFUsyaBZHQKoHyDHOryV1fZQoaAZoCWgPQwgwEtpyLqUGwJSGlFKUaBVLMmgWR0CqB0NK7I1cdX2UKGgGaAloD0MIs82N6QlrEMCUhpRSlGgVSzJoFkdAqgbKsr/bTXV9lChoBmgJaA9DCKQ1Bp0Q6iDAlIaUUpRoFUsyaBZHQKoJXGipNsZ1fZQoaAZoCWgPQwjRksfT8mMPwJSGlFKUaBVLMmgWR0CqCNJ1zQu3dX2UKGgGaAloD0MIwt1Zu+0CEcCUhpRSlGgVSzJoFkdAqghNC5VfeHV9lChoBmgJaA9DCHo4gem0bgTAlIaUUpRoFUsyaBZHQKoH1F2mpER1fZQoaAZoCWgPQwhK0cq9wJwSwJSGlFKUaBVLMmgWR0CqCmjgIhQndX2UKGgGaAloD0MI+Z0mM95WEsCUhpRSlGgVSzJoFkdAqgnezMRpUXV9lChoBmgJaA9DCIzzN6EQoQPAlIaUUpRoFUsyaBZHQKoJWUrTYul1fZQoaAZoCWgPQwhVavZAK5AEwJSGlFKUaBVLMmgWR0CqCOCNbTttdX2UKGgGaAloD0MIj4tqEVFMCMCUhpRSlGgVSzJoFkdAqgtwAp8WsXV9lChoBmgJaA9DCFX3yOaq+RPAlIaUUpRoFUsyaBZHQKoK5eOXE611fZQoaAZoCWgPQwiMTMCvkXQZwJSGlFKUaBVLMmgWR0CqCmBqj8DTdX2UKGgGaAloD0MIejTVk/lnCsCUhpRSlGgVSzJoFkdAqgnnldTo+3V9lChoBmgJaA9DCFa2D3nLZRTAlIaUUpRoFUsyaBZHQKoMiQDmr811fZQoaAZoCWgPQwgOMsnIWQgSwJSGlFKUaBVLMmgWR0CqC/8IAwPAdX2UKGgGaAloD0MIltHI5xW/EsCUhpRSlGgVSzJoFkdAqgt5kEs8PnV9lChoBmgJaA9DCIih1ckZGhLAlIaUUpRoFUsyaBZHQKoLAMn7YTV1ZS4="
81
+ },
82
+ "ep_success_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
+ },
86
+ "_n_updates": 50000,
87
+ "n_steps": 5,
88
+ "gamma": 0.99,
89
+ "gae_lambda": 1.0,
90
+ "ent_coef": 0.0,
91
+ "vf_coef": 0.5,
92
+ "max_grad_norm": 0.5,
93
+ "normalize_advantage": false
94
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:18f31f42b7c3f1392c8a38ace11f05dc95a868fb3f1b3b15ef761ac1d0f3edd4
3
+ size 44606
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:84c6b0446ed642569bafc2898def3b93a1cb0ec3727643b90d2a00a1e1c40dd8
3
+ size 45886
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: False
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fc03217b040>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fc032176e80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678873970167874476, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAZA3gPlyUhryBbA0/ZA3gPlyUhryBbA0/ZA3gPlyUhryBbA0/ZA3gPlyUhryBbA0/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA7OewPMbgiD5Uuto/mSmRv46qgr+vTVy/az+Mv8Cmtb/6Hgq/av3mPizTJj28aPg9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABkDeA+XJSGvIFsDT+qFkm86crRuh8tALxkDeA+XJSGvIFsDT+qFkm86crRuh8tALxkDeA+XJSGvIFsDT+qFkm86crRuh8tALxkDeA+XJSGvIFsDT+qFkm86crRuh8tALyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.43760216 -0.01642817 0.5524369 ]\n [ 0.43760216 -0.01642817 0.5524369 ]\n [ 0.43760216 -0.01642817 0.5524369 ]\n [ 0.43760216 -0.01642817 0.5524369 ]]", "desired_goal": "[[ 0.02159496 0.2673399 1.7088113 ]\n [-1.134082 -1.0208299 -0.86056036]\n [-1.0956854 -1.4191513 -0.53953516]\n [ 0.45115215 0.04072873 0.12129351]]", "observation": "[[ 0.43760216 -0.01642817 0.5524369 -0.01227347 -0.00160059 -0.00782326]\n [ 0.43760216 -0.01642817 0.5524369 -0.01227347 -0.00160059 -0.00782326]\n [ 0.43760216 -0.01642817 0.5524369 -0.01227347 -0.00160059 -0.00782326]\n [ 0.43760216 -0.01642817 0.5524369 -0.01227347 -0.00160059 -0.00782326]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAALXXwPVjJ972x2x48Mf0NPs7Ld704g5A+YQ6HPf087T3rW3k88PIXvt/Ewz3Wkg89lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.117411 -0.1209895 0.00969593]\n [ 0.13866116 -0.0604971 0.28225112]\n [ 0.06594539 0.11583898 0.01521967]\n [-0.14838767 0.09559035 0.03505214]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIZsBZSpYTDcCUhpRSlIwBbJRLMowBdJRHQKnuH1nuiN91fZQoaAZoCWgPQwhVh9wMN+ALwJSGlFKUaBVLMmgWR0Cp7ZVurIYFdX2UKGgGaAloD0MIibZj6q7MDMCUhpRSlGgVSzJoFkdAqe0P531SO3V9lChoBmgJaA9DCPYoXI/CxRXAlIaUUpRoFUsyaBZHQKnsl2X9itt1fZQoaAZoCWgPQwhDBBxCldoYwJSGlFKUaBVLMmgWR0Cp7zEDIRywdX2UKGgGaAloD0MIHEMAcOxZCMCUhpRSlGgVSzJoFkdAqe6m7+T/yXV9lChoBmgJaA9DCJF7urpjkQjAlIaUUpRoFUsyaBZHQKnuIZVGTcJ1fZQoaAZoCWgPQwiuKZDZWXQWwJSGlFKUaBVLMmgWR0Cp7ajZ13dLdX2UKGgGaAloD0MIrUuN0M9UDMCUhpRSlGgVSzJoFkdAqfBABJZntnV9lChoBmgJaA9DCOJ0kq0uJw7AlIaUUpRoFUsyaBZHQKnvteu3c591fZQoaAZoCWgPQwiM8zehEAEcwJSGlFKUaBVLMmgWR0Cp7zBcZ9/jdX2UKGgGaAloD0MI36gVpu8VBsCUhpRSlGgVSzJoFkdAqe63m9xp+XV9lChoBmgJaA9DCBFzSdV2wyDAlIaUUpRoFUsyaBZHQKnxTCojv/l1fZQoaAZoCWgPQwjcuTDSi6ocwJSGlFKUaBVLMmgWR0Cp8MI2wV0tdX2UKGgGaAloD0MIKjdRS3NrFMCUhpRSlGgVSzJoFkdAqfA8nmaH9HV9lChoBmgJaA9DCPYNTG4UKRTAlIaUUpRoFUsyaBZHQKnvw9V3ljp1fZQoaAZoCWgPQwjbMXVXdkEOwJSGlFKUaBVLMmgWR0Cp8lGXXyy2dX2UKGgGaAloD0MIKENVTKUf+7+UhpRSlGgVSzJoFkdAqfHHlfZ26nV9lChoBmgJaA9DCDigpSvYJhPAlIaUUpRoFUsyaBZHQKnxQkDZDiR1fZQoaAZoCWgPQwg3T3XIzbAMwJSGlFKUaBVLMmgWR0Cp8Ml6Z6UrdX2UKGgGaAloD0MIQfUPIhky/r+UhpRSlGgVSzJoFkdAqfNuee4Cp3V9lChoBmgJaA9DCAlP6PUnARHAlIaUUpRoFUsyaBZHQKny5E/jbSJ1fZQoaAZoCWgPQwgeUDblCk8WwJSGlFKUaBVLMmgWR0Cp8l7SApazdX2UKGgGaAloD0MIQfLOoQyVEcCUhpRSlGgVSzJoFkdAqfHl+ocaO3V9lChoBmgJaA9DCCQqVDcXDxjAlIaUUpRoFUsyaBZHQKn0gYsunMt1fZQoaAZoCWgPQwgrMGR1q3cUwJSGlFKUaBVLMmgWR0Cp8/efh/AkdX2UKGgGaAloD0MIfy+FB81+GsCUhpRSlGgVSzJoFkdAqfNyWcBltnV9lChoBmgJaA9DCOhNRSqMXR7AlIaUUpRoFUsyaBZHQKny+ZTAFgV1fZQoaAZoCWgPQwirsYS1MWYXwJSGlFKUaBVLMmgWR0Cp9Y4f4h2XdX2UKGgGaAloD0MIHy3OGObECcCUhpRSlGgVSzJoFkdAqfUEGmk30nV9lChoBmgJaA9DCCHp0yr6IwrAlIaUUpRoFUsyaBZHQKn0foePq9p1fZQoaAZoCWgPQwiakxeZgI8TwJSGlFKUaBVLMmgWR0Cp9AXVTaTPdX2UKGgGaAloD0MISphp+1eWCMCUhpRSlGgVSzJoFkdAqfaWW0JF9nV9lChoBmgJaA9DCFVq9kAr0AvAlIaUUpRoFUsyaBZHQKn2DFDOTq11fZQoaAZoCWgPQwhiLNMvEZ8RwJSGlFKUaBVLMmgWR0Cp9YbPY4ACdX2UKGgGaAloD0MIBHXKoxthBMCUhpRSlGgVSzJoFkdAqfUOAAhjfHV9lChoBmgJaA9DCJG1hlJ7gRnAlIaUUpRoFUsyaBZHQKn3pV1fVqh1fZQoaAZoCWgPQwjDSC9q94sGwJSGlFKUaBVLMmgWR0Cp9xtHhCMQdX2UKGgGaAloD0MI+PnvwWs3CMCUhpRSlGgVSzJoFkdAqfaVs54nnnV9lChoBmgJaA9DCByWBn5UYwXAlIaUUpRoFUsyaBZHQKn2HO8kD6p1fZQoaAZoCWgPQwgld9hEZu4FwJSGlFKUaBVLMmgWR0Cp+LMoDxLCdX2UKGgGaAloD0MIfQkVHF5QD8CUhpRSlGgVSzJoFkdAqfgpC0F8onV9lChoBmgJaA9DCC5XPzbJzxjAlIaUUpRoFUsyaBZHQKn3o36Q/5d1fZQoaAZoCWgPQwie76fGSxcTwJSGlFKUaBVLMmgWR0Cp9yqbjLjhdX2UKGgGaAloD0MIN8e5TbiHE8CUhpRSlGgVSzJoFkdAqfoHlhgE2nV9lChoBmgJaA9DCI4HW+z2aRPAlIaUUpRoFUsyaBZHQKn5fhUipvR1fZQoaAZoCWgPQwjPZ0C9GfUDwJSGlFKUaBVLMmgWR0Cp+Pmgi/widX2UKGgGaAloD0MIg1FJnYCGAcCUhpRSlGgVSzJoFkdAqfiBwVCXyHV9lChoBmgJaA9DCCSYamYtRQTAlIaUUpRoFUsyaBZHQKn7vn13+uN1fZQoaAZoCWgPQwiRYRVvZH4EwJSGlFKUaBVLMmgWR0Cp+zVvddmhdX2UKGgGaAloD0MI7MGk+PgEDcCUhpRSlGgVSzJoFkdAqfqwoRZlnXV9lChoBmgJaA9DCP7UeOkmgRnAlIaUUpRoFUsyaBZHQKn6OH0se4l1fZQoaAZoCWgPQwis5jki36UFwJSGlFKUaBVLMmgWR0Cp/WsK9f1IdX2UKGgGaAloD0MIYi6p2m6CB8CUhpRSlGgVSzJoFkdAqfzh+OOsDHV9lChoBmgJaA9DCAADQYAMfQDAlIaUUpRoFUsyaBZHQKn8XWSU1Q91fZQoaAZoCWgPQwhtHofB/PUOwJSGlFKUaBVLMmgWR0Cp++VOj7AMdX2UKGgGaAloD0MIMA+Z8iGICMCUhpRSlGgVSzJoFkdAqf8wwoLG73V9lChoBmgJaA9DCGufjscMdAjAlIaUUpRoFUsyaBZHQKn+p5TIeYF1fZQoaAZoCWgPQwgSwTi4dGwEwJSGlFKUaBVLMmgWR0Cp/iLo4dZJdX2UKGgGaAloD0MITimvldA9DcCUhpRSlGgVSzJoFkdAqf2q7wrlNnV9lChoBmgJaA9DCJkrg2qD0wLAlIaUUpRoFUsyaBZHQKoBCmXw9aF1fZQoaAZoCWgPQwjP+L64VCUWwJSGlFKUaBVLMmgWR0CqAIEv9LpSdX2UKGgGaAloD0MIzm4tk+HIEsCUhpRSlGgVSzJoFkdAqf/8qBmPHXV9lChoBmgJaA9DCJtZSwFp3wjAlIaUUpRoFUsyaBZHQKn/hV/+bVl1fZQoaAZoCWgPQwh63o0FhUELwJSGlFKUaBVLMmgWR0CqAtfhMrVfdX2UKGgGaAloD0MI8nwG1JvxA8CUhpRSlGgVSzJoFkdAqgJOt4iX6nV9lChoBmgJaA9DCCzwFd16TRHAlIaUUpRoFUsyaBZHQKoByjdHlOp1fZQoaAZoCWgPQwguy9dl+K8PwJSGlFKUaBVLMmgWR0CqAVJcxCY1dX2UKGgGaAloD0MIN8E3TZ99CsCUhpRSlGgVSzJoFkdAqgSq6vq1PXV9lChoBmgJaA9DCM2RlV8GowbAlIaUUpRoFUsyaBZHQKoEIcn3L3d1fZQoaAZoCWgPQwiESIYcW88NwJSGlFKUaBVLMmgWR0CqA51FhG6PdX2UKGgGaAloD0MI0HtjCABeHcCUhpRSlGgVSzJoFkdAqgMlbX6InHV9lChoBmgJaA9DCKGhf4KLJRnAlIaUUpRoFUsyaBZHQKoGOCpWFOB1fZQoaAZoCWgPQwiMS1Xa4voYwJSGlFKUaBVLMmgWR0CqBa5Wq95AdX2UKGgGaAloD0MI+OKL9nixIMCUhpRSlGgVSzJoFkdAqgUo0VJti3V9lChoBmgJaA9DCHhDGhU4WQjAlIaUUpRoFUsyaBZHQKoEsAMlTm51fZQoaAZoCWgPQwg6PITx01gFwJSGlFKUaBVLMmgWR0CqB0SIP9UCdX2UKGgGaAloD0MIeCXJc31fEMCUhpRSlGgVSzJoFkdAqga6hBZ6lnV9lChoBmgJaA9DCDiCVIodbQnAlIaUUpRoFUsyaBZHQKoGNPwd8zB1fZQoaAZoCWgPQwgg0Jm0qRoIwJSGlFKUaBVLMmgWR0CqBbwwj+rEdX2UKGgGaAloD0MIMCsU6X6+GsCUhpRSlGgVSzJoFkdAqghRwhnrZHV9lChoBmgJaA9DCKM6Hch6WhbAlIaUUpRoFUsyaBZHQKoHyDHOryV1fZQoaAZoCWgPQwgwEtpyLqUGwJSGlFKUaBVLMmgWR0CqB0NK7I1cdX2UKGgGaAloD0MIs82N6QlrEMCUhpRSlGgVSzJoFkdAqgbKsr/bTXV9lChoBmgJaA9DCKQ1Bp0Q6iDAlIaUUpRoFUsyaBZHQKoJXGipNsZ1fZQoaAZoCWgPQwjRksfT8mMPwJSGlFKUaBVLMmgWR0CqCNJ1zQu3dX2UKGgGaAloD0MIwt1Zu+0CEcCUhpRSlGgVSzJoFkdAqghNC5VfeHV9lChoBmgJaA9DCHo4gem0bgTAlIaUUpRoFUsyaBZHQKoH1F2mpER1fZQoaAZoCWgPQwhK0cq9wJwSwJSGlFKUaBVLMmgWR0CqCmjgIhQndX2UKGgGaAloD0MI+Z0mM95WEsCUhpRSlGgVSzJoFkdAqgnezMRpUXV9lChoBmgJaA9DCIzzN6EQoQPAlIaUUpRoFUsyaBZHQKoJWUrTYul1fZQoaAZoCWgPQwhVavZAK5AEwJSGlFKUaBVLMmgWR0CqCOCNbTttdX2UKGgGaAloD0MIj4tqEVFMCMCUhpRSlGgVSzJoFkdAqgtwAp8WsXV9lChoBmgJaA9DCFX3yOaq+RPAlIaUUpRoFUsyaBZHQKoK5eOXE611fZQoaAZoCWgPQwiMTMCvkXQZwJSGlFKUaBVLMmgWR0CqCmBqj8DTdX2UKGgGaAloD0MIejTVk/lnCsCUhpRSlGgVSzJoFkdAqgnnldTo+3V9lChoBmgJaA9DCFa2D3nLZRTAlIaUUpRoFUsyaBZHQKoMiQDmr811fZQoaAZoCWgPQwgOMsnIWQgSwJSGlFKUaBVLMmgWR0CqC/8IAwPAdX2UKGgGaAloD0MIltHI5xW/EsCUhpRSlGgVSzJoFkdAqgt5kEs8PnV9lChoBmgJaA9DCIih1ckZGhLAlIaUUpRoFUsyaBZHQKoLAMn7YTV1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "False", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (817 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -4.31259232359007, "std_reward": 1.7856389941781547, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-15T11:45:56.544936"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:febb320a8b1dbc9fbe2f3e780d9e0610fa7ad693b37a7ed264168f0c7be92621
3
+ size 3056