update model card README.md
Browse files
README.md
CHANGED
@@ -18,8 +18,8 @@ should probably proofread and complete it, then remove this comment. -->
|
|
18 |
|
19 |
This model is a fine-tuned version of [NemesisAlm/distilhubert-finetuned-gtzan](https://huggingface.co/NemesisAlm/distilhubert-finetuned-gtzan) on the GTZAN dataset.
|
20 |
It achieves the following results on the evaluation set:
|
21 |
-
- Loss:
|
22 |
-
- Accuracy: 0.
|
23 |
|
24 |
## Model description
|
25 |
|
@@ -42,19 +42,23 @@ The following hyperparameters were used during training:
|
|
42 |
- train_batch_size: 2
|
43 |
- eval_batch_size: 2
|
44 |
- seed: 42
|
45 |
-
- gradient_accumulation_steps:
|
46 |
-
- total_train_batch_size:
|
47 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
48 |
- lr_scheduler_type: linear
|
49 |
- lr_scheduler_warmup_ratio: 0.1
|
50 |
-
- num_epochs:
|
51 |
- mixed_precision_training: Native AMP
|
52 |
|
53 |
### Training results
|
54 |
|
55 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
56 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
57 |
-
| 0.
|
|
|
|
|
|
|
|
|
58 |
|
59 |
|
60 |
### Framework versions
|
|
|
18 |
|
19 |
This model is a fine-tuned version of [NemesisAlm/distilhubert-finetuned-gtzan](https://huggingface.co/NemesisAlm/distilhubert-finetuned-gtzan) on the GTZAN dataset.
|
20 |
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 2.1781
|
22 |
+
- Accuracy: 0.79
|
23 |
|
24 |
## Model description
|
25 |
|
|
|
42 |
- train_batch_size: 2
|
43 |
- eval_batch_size: 2
|
44 |
- seed: 42
|
45 |
+
- gradient_accumulation_steps: 4
|
46 |
+
- total_train_batch_size: 8
|
47 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
48 |
- lr_scheduler_type: linear
|
49 |
- lr_scheduler_warmup_ratio: 0.1
|
50 |
+
- num_epochs: 5
|
51 |
- mixed_precision_training: Native AMP
|
52 |
|
53 |
### Training results
|
54 |
|
55 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
56 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
57 |
+
| 0.132 | 1.0 | 112 | 2.0618 | 0.75 |
|
58 |
+
| 0.0004 | 2.0 | 225 | 2.5336 | 0.73 |
|
59 |
+
| 0.0001 | 3.0 | 337 | 2.0191 | 0.78 |
|
60 |
+
| 0.0001 | 4.0 | 450 | 2.0529 | 0.79 |
|
61 |
+
| 0.0 | 4.98 | 560 | 2.1781 | 0.79 |
|
62 |
|
63 |
|
64 |
### Framework versions
|