--- license: apache-2.0 tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan-finetuned-gtzan results: [] --- # distilhubert-finetuned-gtzan-finetuned-gtzan This model is a fine-tuned version of [NemesisAlm/distilhubert-finetuned-gtzan](https://huggingface.co/NemesisAlm/distilhubert-finetuned-gtzan) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 2.1781 - Accuracy: 0.79 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.132 | 1.0 | 112 | 2.0618 | 0.75 | | 0.0004 | 2.0 | 225 | 2.5336 | 0.73 | | 0.0001 | 3.0 | 337 | 2.0191 | 0.78 | | 0.0001 | 4.0 | 450 | 2.0529 | 0.79 | | 0.0 | 4.98 | 560 | 2.1781 | 0.79 | ### Framework versions - Transformers 4.29.2 - Pytorch 2.0.1 - Datasets 2.12.0 - Tokenizers 0.13.2