File size: 29,044 Bytes
65dd6ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
from typing import Any, Dict, List, NamedTuple, Optional, Tuple, Union

import numpy as np
import torch
from torch import nn
from torch.nn import functional as F
from transformers import PretrainedConfig, PreTrainedModel
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast


class DecoderInput(NamedTuple):
    hidden_states: torch.Tensor
    position_ids: torch.Tensor
    attention_mask: Optional[torch.Tensor] = None
    past_key_values: Optional[List[torch.FloatTensor]] = None
    output_hidden_states: Optional[bool] = False
    output_attentions: Optional[bool] = False
    use_cache: Optional[bool] = False
    gradient_checkpointing: bool = False


class DecoderOutput(NamedTuple):
    hidden_states: torch.Tensor
    all_hidden_states: Optional[Tuple[torch.Tensor, ...]]
    all_self_attns: Optional[Tuple[torch.Tensor, ...]]
    next_decoder_cache: Optional[Tuple[torch.Tensor, ...]]


class PlamoConfig(PretrainedConfig):  # type: ignore
    model_type: str = "plamo"

    def __init__(
        self,
        vocab_size: int = 32000,
        hidden_size: int = 4096,
        intermediate_size: int = 13312,
        num_hidden_layers: int = 32,
        num_attention_heads: int = 32,
        num_key_value_heads: Optional[int] = None,
        max_position_embeddings: int = 2048,
        initializer_range: float = 0.02,
        rms_norm_eps: float = 1e-6,
        use_cache: bool = True,
        tokenizer_class: str = "PlamoTokenizer",
        pad_token_id: Optional[int] = None,
        bos_token_id: int = 1,
        eos_token_id: int = 2,
        n_shared_head: int = 8,
        tie_word_embeddings: bool = False,
        **kwargs: Any,
    ) -> None:
        self.vocab_size = vocab_size
        self.max_position_embeddings = max_position_embeddings
        self.hidden_size = hidden_size
        self.intermediate_size = intermediate_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads

        # for backward compatibility
        if num_key_value_heads is None:
            num_key_value_heads = num_attention_heads

        self.num_key_value_heads = num_key_value_heads
        self.initializer_range = initializer_range
        self.rms_norm_eps = rms_norm_eps
        self.use_cache = use_cache

        self.n_shared_head = n_shared_head

        super().__init__(
            tokenizer_class=tokenizer_class,
            pad_token_id=pad_token_id,
            bos_token_id=bos_token_id,
            eos_token_id=eos_token_id,
            tie_word_embeddings=tie_word_embeddings,
            **kwargs,
        )


# Copied from transformers.models.bart.modeling_bart._make_causal_mask
def _make_causal_mask(
    input_ids_shape: Tuple[int, int], dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
) -> torch.Tensor:
    """
    Make causal mask used for bi-directional self-attention.
    """
    bsz, tgt_len = input_ids_shape
    mask = torch.full((tgt_len, tgt_len), torch.finfo(dtype).min, device=device)
    mask_cond = torch.arange(mask.size(-1), device=device)
    mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
    mask = mask.to(dtype)

    if past_key_values_length > 0:
        mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
    return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)


# Copied from transformers.models.bart.modeling_bart._expand_mask
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None) -> torch.Tensor:
    """
    Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
    """
    bsz, src_len = mask.size()
    tgt_len = tgt_len if tgt_len is not None else src_len

    expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)

    inverted_mask = 1.0 - expanded_mask

    return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)  # type: ignore


class RotaryEmbedding(torch.nn.Module):
    def __init__(
        self, dim: int, max_position_embeddings: int = 2048, base: int = 10000, device: Optional[torch.device] = None
    ) -> None:
        super().__init__()

        self.dim = dim
        self.max_position_embeddings = max_position_embeddings
        self.base = base
        inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
        self.register_buffer("inv_freq", inv_freq, persistent=False)

        # Build here to make `torch.jit.trace` work.
        self._set_cos_sin_cache(
            seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
        )

    def _set_cos_sin_cache(self, seq_len: int, device: Any, dtype: Any) -> None:
        self.max_seq_len_cached = seq_len
        t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)  # type: ignore

        freqs = torch.einsum("i,j->ij", t, self.inv_freq)
        # Different from paper, but it uses a different permutation in order to obtain the same calculation
        emb = torch.cat((freqs, freqs), dim=-1)
        self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
        self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)

    def forward(self, x: torch.Tensor, seq_len: int) -> Tuple[torch.Tensor, torch.Tensor]:
        # x: [bs, num_attention_heads, seq_len, head_size]
        if seq_len > self.max_seq_len_cached:
            self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)

        return (
            self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),  # type: ignore
            self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),  # type: ignore
        )


def _rotate_half(x: torch.Tensor) -> torch.Tensor:
    """Rotates half the hidden dims of the input."""
    x1 = x[..., : x.shape[-1] // 2]
    x2 = x[..., x.shape[-1] // 2 :]
    return torch.cat((-x2, x1), dim=-1)


def _rotary_pos_emb(x: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor, position_ids: torch.Tensor) -> torch.Tensor:
    # The first two dimensions of cos and sin are always 1, so we can `squeeze` them.
    cos = cos.squeeze(1).squeeze(0)  # [seq_len, dim]
    sin = sin.squeeze(1).squeeze(0)  # [seq_len, dim]
    cos = cos[position_ids].unsqueeze(1)  # [bs, 1, seq_len, dim]
    sin = sin[position_ids].unsqueeze(1)  # [bs, 1, seq_len, dim]
    x_embed = (x * cos) + (_rotate_half(x) * sin)
    return x_embed


class RMSNorm(nn.Module):
    def __init__(self, hidden_size: int, eps: float = 1e-6) -> None:
        super().__init__()
        self.weight = nn.Parameter(torch.ones(hidden_size))
        self.variance_epsilon = eps

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        input_dtype = hidden_states.dtype
        hidden_states = hidden_states.to(torch.float32)
        variance = hidden_states.pow(2).mean(-1, keepdim=True)
        hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
        return self.weight * hidden_states.to(input_dtype)


class Attention(torch.nn.Module):
    def __init__(self, config: PlamoConfig) -> None:
        super().__init__()
        self.config = config
        self.hidden_size = config.hidden_size
        head_dim = self.hidden_size // config.num_attention_heads
        self.max_position_embeddings = config.max_position_embeddings

        self.q_num_heads = config.num_attention_heads
        self.qk_dim = self.v_dim = head_dim
        self.k_num_heads = self.v_num_heads = int(np.ceil(self.q_num_heads / config.n_shared_head))

        self.q_proj = nn.Linear(self.hidden_size, self.q_num_heads * self.qk_dim, bias=False)
        self.k_proj = nn.Linear(self.hidden_size, self.k_num_heads * self.qk_dim, bias=False)
        self.v_proj = nn.Linear(self.hidden_size, self.v_num_heads * self.v_dim, bias=False)
        self.o_proj = nn.Linear(self.q_num_heads * self.v_dim, self.hidden_size, bias=False)
        self.rotary_emb = RotaryEmbedding(self.qk_dim, max_position_embeddings=self.max_position_embeddings)

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.Tensor] = None,
        past_key_value: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
        output_attentions: bool = False,
        use_cache: bool = False,
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor, torch.Tensor]]]:
        bsz, q_len, _ = hidden_states.size()

        query_states = self.q_proj(hidden_states).view(bsz, q_len, self.q_num_heads, self.qk_dim).transpose(1, 2)
        key_states = self.k_proj(hidden_states).view(bsz, q_len, self.k_num_heads, self.qk_dim).transpose(1, 2)
        value_states = self.v_proj(hidden_states).view(bsz, q_len, self.v_num_heads, self.v_dim).transpose(1, 2)

        def _expand_kv(t: torch.Tensor, repeat: int, target: int) -> torch.Tensor:
            return t.repeat(1, repeat, 1, 1)[:, :target]

        # expand shared kv
        assert self.k_num_heads == self.v_num_heads
        key_states = _expand_kv(key_states, self.config.n_shared_head, self.q_num_heads)
        value_states = _expand_kv(value_states, self.config.n_shared_head, self.q_num_heads)

        kv_seq_len = key_states.shape[-2]
        if past_key_value is not None:
            kv_seq_len += past_key_value[0].shape[-2]
        cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
        assert position_ids is not None
        query_states = _rotary_pos_emb(query_states, cos, sin, position_ids)
        key_states = _rotary_pos_emb(key_states, cos, sin, position_ids)
        # [bsz, nh, t, hd]

        if past_key_value is not None:
            # reuse k, v, self_attention
            key_states = torch.cat([past_key_value[0], key_states], dim=2)
            value_states = torch.cat([past_key_value[1], value_states], dim=2)

        past_key_value = (key_states, value_states) if use_cache else None

        attn_output = F.scaled_dot_product_attention(query_states, key_states, value_states, attn_mask=attention_mask)
        attn_output = attn_output.transpose(1, 2)

        attn_output = attn_output.reshape(bsz, q_len, self.q_num_heads * self.v_dim)
        attn_output = self.o_proj(attn_output)

        if not output_attentions:
            attn_weights = None

        return attn_output, attn_weights, past_key_value


class MLP(nn.Module):
    def __init__(self, config: PlamoConfig) -> None:
        super().__init__()
        self.config = config
        self.hidden_size = config.hidden_size
        self.intermediate_size = config.intermediate_size
        self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
        self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
        self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
        self.act_fn = torch.nn.functional.silu

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))  # type: ignore


class PlamoDecoderLayer(torch.nn.Module):
    def __init__(self, config: PlamoConfig) -> None:
        super().__init__()
        self.config = config
        self.hidden_size = config.hidden_size
        self.self_attn = Attention(config)
        self.mlp = MLP(config)
        self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_value: Optional[Tuple[torch.Tensor]] = None,
        output_attentions: Optional[bool] = False,
        use_cache: Optional[bool] = False,
    ) -> Tuple[Any, ...]:
        # from LlamaDecoder
        residual = hidden_states

        hidden_states = self.norm(hidden_states)

        # Self Attention
        hidden_states_sa, self_attn_weights, present_key_value = self.self_attn(
            hidden_states=hidden_states,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_value=past_key_value,
            output_attentions=output_attentions,
            use_cache=use_cache,
        )

        # Fully Connected
        hidden_states_mlp = self.mlp(hidden_states)

        # Residual
        hidden_states = residual + hidden_states_sa + hidden_states_mlp

        outputs: Any = (hidden_states,)

        if output_attentions:
            outputs += (self_attn_weights,)

        if use_cache:
            outputs += (present_key_value,)

        return outputs  # type: ignore


class PlamoDecoder(torch.nn.Module):
    def __init__(self, config: PlamoConfig) -> None:
        super().__init__()
        self.layers = torch.nn.ModuleList([PlamoDecoderLayer(config) for _ in range(config.num_hidden_layers)])

    def forward(self, x: DecoderInput) -> DecoderOutput:
        all_hidden_states: Optional[Tuple[torch.Tensor, ...]] = () if x.output_hidden_states else None
        all_self_attns: Optional[Tuple[torch.Tensor, ...]] = () if x.output_attentions else None
        next_decoder_cache: Optional[Tuple[torch.Tensor, ...]] = () if x.use_cache else None
        hidden_states = x.hidden_states

        for idx, decoder_layer in enumerate(self.layers):
            if x.output_hidden_states:
                assert all_hidden_states is not None
                all_hidden_states += (hidden_states,)

            past_key_value = x.past_key_values[idx] if x.past_key_values is not None else None

            if self.training and x.gradient_checkpointing:

                def create_custom_forward(module):  # type: ignore
                    def custom_forward(*inputs):  # type: ignore
                        # None for past_key_value
                        return module(*inputs, x.output_attentions, None)

                    return custom_forward

                layer_outputs = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(decoder_layer),  # type: ignore
                    hidden_states,
                    x.attention_mask,
                    x.position_ids,
                    None,
                )
            else:
                layer_outputs = decoder_layer(
                    hidden_states,
                    attention_mask=x.attention_mask,
                    position_ids=x.position_ids,
                    past_key_value=past_key_value,
                    output_attentions=x.output_attentions,
                    use_cache=x.use_cache,
                )

            hidden_states = layer_outputs[0]

            if x.use_cache:
                cache = layer_outputs[2 if x.output_attentions else 1]
                assert cache is not None
                assert next_decoder_cache is not None
                next_decoder_cache += (cache,)

            if x.output_attentions:
                assert layer_outputs[1] is not None
                assert all_self_attns is not None
                all_self_attns += (layer_outputs[1],)
        return DecoderOutput(hidden_states, all_hidden_states, all_self_attns, next_decoder_cache)


class PlamoPreTrainedModel(PreTrainedModel):  # type: ignore
    config_class = PlamoConfig
    _no_split_modules: List[str]
    base_model_prefix = "model"
    supports_gradient_checkpointing = True
    _no_split_modules = ["PlamoDecoderLayer"]
    _skip_keys_device_placement = "past_key_values"
    _keys_to_ignore_on_load_unexpected = [r"decoder\.version"]

    def _init_weights(self, module: torch.nn.Module) -> None:
        std = self.config.initializer_range
        if isinstance(module, nn.Linear):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()

    def _set_gradient_checkpointing(self, module: torch.nn.Module, value: bool = False) -> None:
        module.gradient_checkpointing = value  # type: ignore


class PlamoModel(PlamoPreTrainedModel):
    def __init__(self, config: PlamoConfig):
        super().__init__(config)
        self.padding_idx = config.pad_token_id
        self.vocab_size = config.vocab_size

        self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
        self.layers = PlamoDecoder(config)  # type: ignore
        self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)

        self.gradient_checkpointing = False
        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self) -> torch.nn.Embedding:
        return self.embed_tokens

    def set_input_embeddings(self, value: torch.nn.Embedding) -> None:
        self.embed_tokens = value

    # Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
    def _prepare_decoder_attention_mask(
        self,
        attention_mask: torch.Tensor,
        input_shape: Tuple[int, int],
        inputs_embeds: Optional[torch.FloatTensor],
        past_key_values_length: int,
    ) -> Optional[torch.Tensor]:
        # create causal mask
        # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
        combined_attention_mask: Optional[torch.Tensor] = None
        if input_shape[-1] > 1:
            assert inputs_embeds is not None
            combined_attention_mask = _make_causal_mask(
                input_shape,
                inputs_embeds.dtype,
                device=inputs_embeds.device,
                past_key_values_length=past_key_values_length,
            )

        if attention_mask is not None:
            # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
            assert inputs_embeds is not None
            expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
                inputs_embeds.device
            )
            combined_attention_mask = (
                expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
            )

        return combined_attention_mask

    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.Tensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, BaseModelOutputWithPast]:
        assert input_ids is not None
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        use_cache = use_cache if use_cache is not None else self.config.use_cache

        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        # retrieve input_ids and inputs_embeds
        if input_ids is not None and inputs_embeds is not None:
            raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
        elif input_ids is not None:
            batch_size, seq_length = input_ids.shape
        else:
            raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")

        seq_length_with_past = seq_length
        past_key_values_length = 0

        if past_key_values is not None:
            past_key_values_length = past_key_values[0][0].shape[2]
            seq_length_with_past = seq_length_with_past + past_key_values_length

        if position_ids is None:
            device = input_ids.device
            position_ids = torch.arange(
                past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
            )
            position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
        else:
            position_ids = position_ids.view(-1, seq_length).long()

        if inputs_embeds is None:
            inputs_embeds = self.embed_tokens(input_ids)
        # embed positions
        if attention_mask is None:
            attention_mask = torch.ones(
                (batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
            )
        attention_mask = self._prepare_decoder_attention_mask(
            attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
        )

        hidden_states = inputs_embeds

        if self.gradient_checkpointing and self.training:
            if use_cache:
                use_cache = False

        # decoder layers
        out = self.layers(
            DecoderInput(
                hidden_states,
                position_ids,
                attention_mask,
                past_key_values,
                output_hidden_states,
                output_attentions,
                use_cache,
                self.gradient_checkpointing,
            )
        )
        assert isinstance(out, DecoderOutput)
        hidden_states = out.hidden_states
        all_hidden_states = out.all_hidden_states
        all_self_attns = out.all_self_attns
        next_decoder_cache = out.next_decoder_cache

        hidden_states = self.norm(hidden_states)

        # add hidden states from the last decoder layer
        if output_hidden_states:
            assert all_hidden_states is not None
            all_hidden_states += (hidden_states,)

        next_cache = next_decoder_cache if use_cache else None
        if not return_dict:
            return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
        return BaseModelOutputWithPast(
            last_hidden_state=hidden_states,
            past_key_values=next_cache,
            hidden_states=all_hidden_states,
            attentions=all_self_attns,
        )


class PlamoForCausalLM(PlamoPreTrainedModel):
    def __init__(self, config: PretrainedConfig) -> None:
        super().__init__(config)
        self.model = PlamoModel(config)

        self.lm_head: torch.nn.Module = nn.Linear(config.hidden_size, config.vocab_size, bias=False)

        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self) -> torch.nn.Embedding:
        return self.model.embed_tokens

    def set_input_embeddings(self, value: torch.nn.Embedding) -> None:
        self.model.embed_tokens = value

    def get_output_embeddings(self) -> torch.nn.Module:
        return self.lm_head

    def set_output_embeddings(self, new_embeddings: torch.nn.Module) -> None:
        self.lm_head = new_embeddings

    def set_decoder(self, decoder: PlamoModel) -> None:
        self.model = decoder

    def get_decoder(self) -> PlamoModel:
        return self.model

    def forward(  # type: ignore
        self,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.Tensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, CausalLMOutputWithPast]:
        r"""
        Args:
            labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
                Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
                config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
                (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.

        Returns:

        Example:

        ```python
        >>> from transformers import AutoTokenizer, LlamaForCausalLM

        >>> model = LlamaForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
        >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)

        >>> prompt = "Hey, are you consciours? Can you talk to me?"
        >>> inputs = tokenizer(prompt, return_tensors="pt")

        >>> # Generate
        >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
        >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
        "Hey, are you consciours? Can you talk to me?\nI'm not consciours, but I can talk to you."
        ```"""
        assert input_ids is not None

        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
        outputs = self.model(
            input_ids=input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        hidden_states = outputs[0]
        logits = self.lm_head(hidden_states)

        loss = None
        if labels is not None:
            # Shift so that tokens < n predict n
            shift_logits = logits[..., :-1, :].contiguous()
            shift_labels = labels[..., 1:].contiguous()
            # Flatten the tokens
            loss_fct = nn.CrossEntropyLoss()
            shift_logits = shift_logits.view(-1, self.config.vocab_size)
            shift_labels = shift_labels.view(-1)
            # Enable model parallelism
            shift_labels = shift_labels.to(shift_logits.device)
            loss = loss_fct(shift_logits, shift_labels)

        if not return_dict:
            output = (logits,) + outputs[1:]
            return (loss,) + output if loss is not None else output

        return CausalLMOutputWithPast(
            loss=loss,
            logits=logits,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )

    def prepare_inputs_for_generation(
        self,
        input_ids: torch.Tensor,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        attention_mask: Optional[torch.Tensor] = None,
        inputs_embeds: Optional[torch.Tensor] = None,
        **kwargs: Any,
    ) -> Dict[str, Any]:
        if past_key_values:
            input_ids = input_ids[:, -1:]

        position_ids = kwargs.get("position_ids", None)
        if attention_mask is not None and position_ids is None:
            # create position_ids on the fly for batch generation
            position_ids = attention_mask.long().cumsum(-1) - 1
            position_ids.masked_fill_(attention_mask == 0, 1)
            if past_key_values:
                position_ids = position_ids[:, -1].unsqueeze(-1)

        # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
        if inputs_embeds is not None and past_key_values is None:
            model_inputs: Dict[str, Any] = {"inputs_embeds": inputs_embeds}
        else:
            model_inputs = {"input_ids": input_ids}

        model_inputs.update(
            {
                "position_ids": position_ids,
                "past_key_values": past_key_values,
                "use_cache": kwargs.get("use_cache"),
                "attention_mask": attention_mask,
            }
        )
        return model_inputs

    @staticmethod
    def _reorder_cache(past_key_values: List[torch.FloatTensor], beam_idx: int) -> Tuple[Any, ...]:
        reordered_past: Tuple[Any, ...] = ()
        for layer_past in past_key_values:
            reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),)
        return reordered_past