phil-bgm commited on
Commit
0f1ef91
1 Parent(s): ee552a3

Upload PPO LunarLander-v2 trained agent

Browse files
PPO-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:978db881a4b02237669bdf0b8dafcfd2bea67e7013f3f123d722a67bc5bf0219
3
+ size 146787
PPO-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
PPO-LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x165282200>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x165282290>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x165282320>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x1652823b0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x165282440>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x1652824d0>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x165282560>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x1652825f0>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x165282680>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x165282710>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x1652827a0>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc._abc_data object at 0x165284f40>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 65536,
46
+ "_total_timesteps": 50000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1668526154349070000,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVDwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMbi9Vc2Vycy9waGlsaXBwYmVyZ21hbm4vLm1pbmlmb3JnZTMvZW52cy9kZWVwLXJsL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxuL1VzZXJzL3BoaWxpcHBiZXJnbWFubi8ubWluaWZvcmdlMy9lbnZzL2RlZXAtcmwvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAPPd/T2Ar3M/kpePPrMRX78aWkc+20xUPgAAAAAAAAAAZp36PjtYSj/+6Ao/x2Juv3fWTD/ldm4+AAAAAAAAAADaaPk9LZVhPwOlQj383kS/jgxcPp4jGT4AAAAAAAAAAM9NBb+ITsM9u7fZvuMtur8nXw2/bmravgAAAAAAAAAAnuGOvobngj/WGZE9Uc9Xv1hrgL9YVTm+AAAAAAAAAACGIzi+sSO0P1k9E7+xyYG+JUVMPc0hab4AAAAAAAAAAFoWAz/rOlQ/qjilPu/7hL+xdj0/iK20PQAAAAAAAAAAkKJSvoCLoT+ycrS+A+L4vg7CC77GNmO+AAAAAAAAAAA2iIc+waDMP4LTBD9qYrO9zR1TPv6SgD4AAAAAAAAAABrmQL7jTqc/AYgwv82K576AWO87MkQwOwAAAAAAAAAAeginvlv2Az9L0TO/L4OAv1HuHj5aoJk6AAAAAAAAAABD8CQ/etcNPnhMOz5fU4+/kxZoP/b2aj4AAAAAAAAAAFqTiL5beyg/KgijPWGGer/hToC/iSS2vgAAAAAAAAAAGlSnvTdirD9aJ+C9DfgJv2E34r7Vkna9AAAAAAAAAACAJAC9LeiHP7VRLL6H2jS/Y7wDPkoTOj4AAAAAAAAAAAAXUD321pE/9cXWPdUbI78ivx49NhmrvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.3107200000000001,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIi6iJPh9KVsCUhpRSlIwBbJRLXIwBdJRHQCPCTyJ9Aop1fZQoaAZoCWgPQwhTsMbZdDBhwJSGlFKUaBVLd2gWR0Ajxq0MPSUkdX2UKGgGaAloD0MIPxnjw+yWW8CUhpRSlGgVS1RoFkdAI8m5+YtxuXV9lChoBmgJaA9DCC3RWWYRjVLAlIaUUpRoFUuJaBZHQCPO1F6Rhc91fZQoaAZoCWgPQwgeNLvurSNRwJSGlFKUaBVLQ2gWR0Aj0aAnUlRhdX2UKGgGaAloD0MIAW4WL9ZcccCUhpRSlGgVS3xoFkdAI9T987ZFonV9lChoBmgJaA9DCESKARJNj1jAlIaUUpRoFUtsaBZHQCPZAprk8zR1fZQoaAZoCWgPQwhRTUnWYZFnwJSGlFKUaBVLX2gWR0Aj2jKxLTQWdX2UKGgGaAloD0MIbqRskTT1ZcCUhpRSlGgVS2toFkdAI9wNsnAqNXV9lChoBmgJaA9DCPAxWHGqjGLAlIaUUpRoFUtXaBZHQCPjiS7oSth1fZQoaAZoCWgPQwjFG5lH/pZYwJSGlFKUaBVLhWgWR0Aj8AskIHC5dX2UKGgGaAloD0MIPZzAdFpOXMCUhpRSlGgVS2NoFkdAI/JqIrOJL3V9lChoBmgJaA9DCGkAb4GEzWDAlIaUUpRoFUtWaBZHQCP5CIDYAbR1fZQoaAZoCWgPQwgaTpmb72VqwJSGlFKUaBVLdWgWR0Aj+iEg4ffXdX2UKGgGaAloD0MIiEhNu5gTW8CUhpRSlGgVS0RoFkdAJACSaEzwdHV9lChoBmgJaA9DCK4s0VlmD1fAlIaUUpRoFUtXaBZHQCQE3Kji4rl1fZQoaAZoCWgPQwhRweEFERdPwJSGlFKUaBVLR2gWR0AkEUmD15B1dX2UKGgGaAloD0MILc4Y5kTwcsCUhpRSlGgVS11oFkdAJBJGOMl1KXV9lChoBmgJaA9DCJzFi4UhjkbAlIaUUpRoFUtOaBZHQCQY176YVqN1fZQoaAZoCWgPQwidvMgE/AhiwJSGlFKUaBVLaWgWR0AkGPpY9xIbdX2UKGgGaAloD0MIs+xJYHPrXsCUhpRSlGgVS3xoFkdAJBwqRU3n6nV9lChoBmgJaA9DCCmxa3u7bVnAlIaUUpRoFUtgaBZHQCQjj5sTFl11fZQoaAZoCWgPQwjReCKI8wNQwJSGlFKUaBVLWmgWR0AkJagVXV9XdX2UKGgGaAloD0MIDYy8rInhU8CUhpRSlGgVS2hoFkdAJCcD0UXYUXV9lChoBmgJaA9DCAKdSZuqUFrAlIaUUpRoFUtXaBZHQCQryDqW1MN1fZQoaAZoCWgPQwhftp22RjBCwJSGlFKUaBVLR2gWR0AkK/SH/LkkdX2UKGgGaAloD0MIZw+0AkOPWcCUhpRSlGgVS3JoFkdAJC0EX+ERJ3V9lChoBmgJaA9DCPJfIAgQ+WDAlIaUUpRoFUtdaBZHQCRFF2FFlTZ1fZQoaAZoCWgPQwjowHKEDJ1WwJSGlFKUaBVLU2gWR0AkSVdHDrJKdX2UKGgGaAloD0MI7Sk5J/ZGWcCUhpRSlGgVS0ZoFkdAJFWDg62fCnV9lChoBmgJaA9DCHkgskiT42bAlIaUUpRoFUt4aBZHQCRVqUNayKN1fZQoaAZoCWgPQwibG9MTlkNTwJSGlFKUaBVLcGgWR0AkVs/IKc/ddX2UKGgGaAloD0MIzZGVXwZtWcCUhpRSlGgVS0JoFkdAJFyQPqcEvHV9lChoBmgJaA9DCBWqm4u/kmPAlIaUUpRoFUtaaBZHQCRcZ9/jKgZ1fZQoaAZoCWgPQwgQW3o01YNVwJSGlFKUaBVLXWgWR0AkX3Hq/ub7dX2UKGgGaAloD0MIz4dnCTJEUsCUhpRSlGgVS0poFkdAJGHJT2nKn3V9lChoBmgJaA9DCD1EozuIcG3AlIaUUpRoFUt6aBZHQCRlr9ETg2t1fZQoaAZoCWgPQwghBrr2BbJawJSGlFKUaBVLSmgWR0AkaLP2PDHfdX2UKGgGaAloD0MIiNaKNsf0VcCUhpRSlGgVS01oFkdAJGo7eVLSNXV9lChoBmgJaA9DCIuk3ehjNmHAlIaUUpRoFUttaBZHQCRxiqhlDnh1fZQoaAZoCWgPQwgIHt/eNfZpwJSGlFKUaBVLYWgWR0AkcbGWD6FedX2UKGgGaAloD0MIqMXgYdpKZcCUhpRSlGgVS3RoFkdAJHZmRNh3JXV9lChoBmgJaA9DCOiGpux0LWDAlIaUUpRoFUtnaBZHQCR8LncL0Bh1fZQoaAZoCWgPQwjaVx6kpy1gwJSGlFKUaBVLXmgWR0AknqfOD8LsdX2UKGgGaAloD0MIb2WJzrLVYsCUhpRSlGgVS3RoFkdAJKc14xDb8HV9lChoBmgJaA9DCFhTWRR2glLAlIaUUpRoFUtnaBZHQCSpkqc3EQ51fZQoaAZoCWgPQwgKndfYpWltwJSGlFKUaBVLWmgWR0AkrtCRfWtmdX2UKGgGaAloD0MIHQHcLF7QW8CUhpRSlGgVS2VoFkdAJK7qyGBWgnV9lChoBmgJaA9DCKZHUz2ZLlfAlIaUUpRoFUttaBZHQCSu1IAfdRB1fZQoaAZoCWgPQwjUKCSZ1fVQwJSGlFKUaBVLTGgWR0AksQjD8+A3dX2UKGgGaAloD0MILLr1mh6ZWcCUhpRSlGgVS2NoFkdAJLD7Q9ic5XV9lChoBmgJaA9DCPX3UnjQNl/AlIaUUpRoFUtkaBZHQCS0auOjqOd1fZQoaAZoCWgPQwhPWyOCceVbwJSGlFKUaBVLYGgWR0Akt876pHZsdX2UKGgGaAloD0MIBYcXRKRJXsCUhpRSlGgVS1ZoFkdAJLmRNh3JP3V9lChoBmgJaA9DCFewjXiyiUbAlIaUUpRoFUtRaBZHQCS7CiyprDZ1fZQoaAZoCWgPQwh6GjBI+uwyQJSGlFKUaBVLdmgWR0AkvOzIFNcodX2UKGgGaAloD0MIR5IgXAF7UcCUhpRSlGgVS05oFkdAJL8mKIi1RnV9lChoBmgJaA9DCNLlzeFa8FfAlIaUUpRoFUuUaBZHQCS/PTodMkB1fZQoaAZoCWgPQwhuh4bFKG5vwJSGlFKUaBVLcWgWR0AkxMHKOktVdX2UKGgGaAloD0MIdAmH3uI6UMCUhpRSlGgVS0NoFkdAJOF9jPOY6XV9lChoBmgJaA9DCL5Nf/YjilfAlIaUUpRoFUtUaBZHQCThVMmF8G91fZQoaAZoCWgPQwjEzalkALJVwJSGlFKUaBVLUWgWR0Ak5yBkI5YHdX2UKGgGaAloD0MI1SKimLz1RsCUhpRSlGgVS1BoFkdAJOrf1pTMq3V9lChoBmgJaA9DCLiTiPAvm1TAlIaUUpRoFUtHaBZHQCTroUzsQd11fZQoaAZoCWgPQwjowd1ZuxdawJSGlFKUaBVLUmgWR0Ak7LzwtrbhdX2UKGgGaAloD0MIbAiOy/i8dcCUhpRSlGgVS2BoFkdAJPGa6STyKHV9lChoBmgJaA9DCHO6LCY2KG/AlIaUUpRoFUtYaBZHQCT1hJAdGRV1fZQoaAZoCWgPQwhDVrd6zqxqwJSGlFKUaBVLZmgWR0Ak+/fO2RaHdX2UKGgGaAloD0MIdNAlHHq9UMCUhpRSlGgVS0xoFkdAJP6F/QSi/XV9lChoBmgJaA9DCIbnpWJj5mHAlIaUUpRoFUtqaBZHQCUA0waisXB1fZQoaAZoCWgPQwgk7xzKUGdgwJSGlFKUaBVLZmgWR0AlCTakAPupdX2UKGgGaAloD0MIjgJEwQzyasCUhpRSlGgVS2loFkdAJQ4SQHRkVnV9lChoBmgJaA9DCKVMamhD74DAlIaUUpRoFUuDaBZHQCUeRDCxeLN1fZQoaAZoCWgPQwhPWOIBZYdrwJSGlFKUaBVLfWgWR0AlHjBl+VkddX2UKGgGaAloD0MInE8dq5QRZsCUhpRSlGgVS4poFkdAJSJ4SpR4yHV9lChoBmgJaA9DCLfRAN4CDVbAlIaUUpRoFUtTaBZHQCUuRV6u4gB1fZQoaAZoCWgPQwhzDwnf+5VbwJSGlFKUaBVLZmgWR0AlM0tyxRl6dX2UKGgGaAloD0MI9bwbCwp2XsCUhpRSlGgVS1xoFkdAJTRoZhrnDHV9lChoBmgJaA9DCGixFMlX61XAlIaUUpRoFUtNaBZHQCU5pvgm7at1fZQoaAZoCWgPQwjLD1zlCdtcwJSGlFKUaBVLW2gWR0AlOozeoDPodX2UKGgGaAloD0MICW6kbJGVXsCUhpRSlGgVS3BoFkdAJUEhzNliB3V9lChoBmgJaA9DCEG62LRSzGLAlIaUUpRoFUtiaBZHQCVN/4Irvst1fZQoaAZoCWgPQwi9HeG04PppwJSGlFKUaBVLhmgWR0AlTiF0xM37dX2UKGgGaAloD0MI746M1eZ3Z8CUhpRSlGgVS15oFkdAJVZuZTho/XV9lChoBmgJaA9DCNrKS/4ndzlAlIaUUpRoFUuFaBZHQCVXfwZwXIl1fZQoaAZoCWgPQwjgSnZsBBZawJSGlFKUaBVLXGgWR0AlWe/5+H8CdX2UKGgGaAloD0MIBvaYSGlkTsCUhpRSlGgVS0ZoFkdAJVxvegte2XV9lChoBmgJaA9DCFngK7r1/VrAlIaUUpRoFUtPaBZHQCVfXTVlPJt1fZQoaAZoCWgPQwhBgAwdO11XwJSGlFKUaBVLQWgWR0AlaHBUJfICdX2UKGgGaAloD0MIWIy61l7BbcCUhpRSlGgVS4VoFkdAJWwSSNfgJnV9lChoBmgJaA9DCPXZAdcVIVPAlIaUUpRoFUtQaBZHQCVvuZ1FH8V1fZQoaAZoCWgPQwgPe6GAbWdqwJSGlFKUaBVLp2gWR0AlfE3sHB1tdX2UKGgGaAloD0MIlUkNbQAnWcCUhpRSlGgVS3VoFkdAJX1hLGrCFnV9lChoBmgJaA9DCNY1Wg70wVXAlIaUUpRoFUtSaBZHQCV9Xo1UEPl1fZQoaAZoCWgPQwhfs1w2OgldwJSGlFKUaBVLTmgWR0AlgL6UJOWTdX2UKGgGaAloD0MI/FBpxMw6Q8CUhpRSlGgVS0FoFkdAJYJLVWjoIXV9lChoBmgJaA9DCO2A64oZeGfAlIaUUpRoFUtoaBZHQCWINkOI68x1fZQoaAZoCWgPQwgtQUZAhdtTwJSGlFKUaBVLZ2gWR0Ali/HHWBjGdX2UKGgGaAloD0MIBhIUP8apVMCUhpRSlGgVS0doFkdAJY5/kNnXd3V9lChoBmgJaA9DCBN/FHXmbF3AlIaUUpRoFUtJaBZHQCWPHzYmLLp1ZS4="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 16,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVDwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMbi9Vc2Vycy9waGlsaXBwYmVyZ21hbm4vLm1pbmlmb3JnZTMvZW52cy9kZWVwLXJsL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxuL1VzZXJzL3BoaWxpcHBiZXJnbWFubi8ubWluaWZvcmdlMy9lbnZzL2RlZXAtcmwvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
PPO-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f4110b4221621b1a5a327977719a5d55b72d612a584ba7e47cb5b124a2a8f951
3
+ size 87545
PPO-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e5a970aec6cbcbe9d94ce6c14f7d1ed94c710c57e3af9807c598842f3af2e951
3
+ size 43073
PPO-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
PPO-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: macOS-12.6-arm64-arm-64bit Darwin Kernel Version 21.6.0: Mon Aug 22 20:19:52 PDT 2022; root:xnu-8020.140.49~2/RELEASE_ARM64_T6000
2
+ Python: 3.10.6
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.13.0
5
+ GPU Enabled: False
6
+ Numpy: 1.23.4
7
+ Gym: 0.21.0
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -189.66 +/- 26.70
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x165282200>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x165282290>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x165282320>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x1652823b0>", "_build": "<function ActorCriticPolicy._build at 0x165282440>", "forward": "<function ActorCriticPolicy.forward at 0x1652824d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x165282560>", "_predict": "<function ActorCriticPolicy._predict at 0x1652825f0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x165282680>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x165282710>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x1652827a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x165284f40>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 65536, "_total_timesteps": 50000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1668526154349070000, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVDwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMbi9Vc2Vycy9waGlsaXBwYmVyZ21hbm4vLm1pbmlmb3JnZTMvZW52cy9kZWVwLXJsL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxuL1VzZXJzL3BoaWxpcHBiZXJnbWFubi8ubWluaWZvcmdlMy9lbnZzL2RlZXAtcmwvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAPPd/T2Ar3M/kpePPrMRX78aWkc+20xUPgAAAAAAAAAAZp36PjtYSj/+6Ao/x2Juv3fWTD/ldm4+AAAAAAAAAADaaPk9LZVhPwOlQj383kS/jgxcPp4jGT4AAAAAAAAAAM9NBb+ITsM9u7fZvuMtur8nXw2/bmravgAAAAAAAAAAnuGOvobngj/WGZE9Uc9Xv1hrgL9YVTm+AAAAAAAAAACGIzi+sSO0P1k9E7+xyYG+JUVMPc0hab4AAAAAAAAAAFoWAz/rOlQ/qjilPu/7hL+xdj0/iK20PQAAAAAAAAAAkKJSvoCLoT+ycrS+A+L4vg7CC77GNmO+AAAAAAAAAAA2iIc+waDMP4LTBD9qYrO9zR1TPv6SgD4AAAAAAAAAABrmQL7jTqc/AYgwv82K576AWO87MkQwOwAAAAAAAAAAeginvlv2Az9L0TO/L4OAv1HuHj5aoJk6AAAAAAAAAABD8CQ/etcNPnhMOz5fU4+/kxZoP/b2aj4AAAAAAAAAAFqTiL5beyg/KgijPWGGer/hToC/iSS2vgAAAAAAAAAAGlSnvTdirD9aJ+C9DfgJv2E34r7Vkna9AAAAAAAAAACAJAC9LeiHP7VRLL6H2jS/Y7wDPkoTOj4AAAAAAAAAAAAXUD321pE/9cXWPdUbI78ivx49NhmrvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.3107200000000001, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIi6iJPh9KVsCUhpRSlIwBbJRLXIwBdJRHQCPCTyJ9Aop1fZQoaAZoCWgPQwhTsMbZdDBhwJSGlFKUaBVLd2gWR0Ajxq0MPSUkdX2UKGgGaAloD0MIPxnjw+yWW8CUhpRSlGgVS1RoFkdAI8m5+YtxuXV9lChoBmgJaA9DCC3RWWYRjVLAlIaUUpRoFUuJaBZHQCPO1F6Rhc91fZQoaAZoCWgPQwgeNLvurSNRwJSGlFKUaBVLQ2gWR0Aj0aAnUlRhdX2UKGgGaAloD0MIAW4WL9ZcccCUhpRSlGgVS3xoFkdAI9T987ZFonV9lChoBmgJaA9DCESKARJNj1jAlIaUUpRoFUtsaBZHQCPZAprk8zR1fZQoaAZoCWgPQwhRTUnWYZFnwJSGlFKUaBVLX2gWR0Aj2jKxLTQWdX2UKGgGaAloD0MIbqRskTT1ZcCUhpRSlGgVS2toFkdAI9wNsnAqNXV9lChoBmgJaA9DCPAxWHGqjGLAlIaUUpRoFUtXaBZHQCPjiS7oSth1fZQoaAZoCWgPQwjFG5lH/pZYwJSGlFKUaBVLhWgWR0Aj8AskIHC5dX2UKGgGaAloD0MIPZzAdFpOXMCUhpRSlGgVS2NoFkdAI/JqIrOJL3V9lChoBmgJaA9DCGkAb4GEzWDAlIaUUpRoFUtWaBZHQCP5CIDYAbR1fZQoaAZoCWgPQwgaTpmb72VqwJSGlFKUaBVLdWgWR0Aj+iEg4ffXdX2UKGgGaAloD0MIiEhNu5gTW8CUhpRSlGgVS0RoFkdAJACSaEzwdHV9lChoBmgJaA9DCK4s0VlmD1fAlIaUUpRoFUtXaBZHQCQE3Kji4rl1fZQoaAZoCWgPQwhRweEFERdPwJSGlFKUaBVLR2gWR0AkEUmD15B1dX2UKGgGaAloD0MILc4Y5kTwcsCUhpRSlGgVS11oFkdAJBJGOMl1KXV9lChoBmgJaA9DCJzFi4UhjkbAlIaUUpRoFUtOaBZHQCQY176YVqN1fZQoaAZoCWgPQwidvMgE/AhiwJSGlFKUaBVLaWgWR0AkGPpY9xIbdX2UKGgGaAloD0MIs+xJYHPrXsCUhpRSlGgVS3xoFkdAJBwqRU3n6nV9lChoBmgJaA9DCCmxa3u7bVnAlIaUUpRoFUtgaBZHQCQjj5sTFl11fZQoaAZoCWgPQwjReCKI8wNQwJSGlFKUaBVLWmgWR0AkJagVXV9XdX2UKGgGaAloD0MIDYy8rInhU8CUhpRSlGgVS2hoFkdAJCcD0UXYUXV9lChoBmgJaA9DCAKdSZuqUFrAlIaUUpRoFUtXaBZHQCQryDqW1MN1fZQoaAZoCWgPQwhftp22RjBCwJSGlFKUaBVLR2gWR0AkK/SH/LkkdX2UKGgGaAloD0MIZw+0AkOPWcCUhpRSlGgVS3JoFkdAJC0EX+ERJ3V9lChoBmgJaA9DCPJfIAgQ+WDAlIaUUpRoFUtdaBZHQCRFF2FFlTZ1fZQoaAZoCWgPQwjowHKEDJ1WwJSGlFKUaBVLU2gWR0AkSVdHDrJKdX2UKGgGaAloD0MI7Sk5J/ZGWcCUhpRSlGgVS0ZoFkdAJFWDg62fCnV9lChoBmgJaA9DCHkgskiT42bAlIaUUpRoFUt4aBZHQCRVqUNayKN1fZQoaAZoCWgPQwibG9MTlkNTwJSGlFKUaBVLcGgWR0AkVs/IKc/ddX2UKGgGaAloD0MIzZGVXwZtWcCUhpRSlGgVS0JoFkdAJFyQPqcEvHV9lChoBmgJaA9DCBWqm4u/kmPAlIaUUpRoFUtaaBZHQCRcZ9/jKgZ1fZQoaAZoCWgPQwgQW3o01YNVwJSGlFKUaBVLXWgWR0AkX3Hq/ub7dX2UKGgGaAloD0MIz4dnCTJEUsCUhpRSlGgVS0poFkdAJGHJT2nKn3V9lChoBmgJaA9DCD1EozuIcG3AlIaUUpRoFUt6aBZHQCRlr9ETg2t1fZQoaAZoCWgPQwghBrr2BbJawJSGlFKUaBVLSmgWR0AkaLP2PDHfdX2UKGgGaAloD0MIiNaKNsf0VcCUhpRSlGgVS01oFkdAJGo7eVLSNXV9lChoBmgJaA9DCIuk3ehjNmHAlIaUUpRoFUttaBZHQCRxiqhlDnh1fZQoaAZoCWgPQwgIHt/eNfZpwJSGlFKUaBVLYWgWR0AkcbGWD6FedX2UKGgGaAloD0MIqMXgYdpKZcCUhpRSlGgVS3RoFkdAJHZmRNh3JXV9lChoBmgJaA9DCOiGpux0LWDAlIaUUpRoFUtnaBZHQCR8LncL0Bh1fZQoaAZoCWgPQwjaVx6kpy1gwJSGlFKUaBVLXmgWR0AknqfOD8LsdX2UKGgGaAloD0MIb2WJzrLVYsCUhpRSlGgVS3RoFkdAJKc14xDb8HV9lChoBmgJaA9DCFhTWRR2glLAlIaUUpRoFUtnaBZHQCSpkqc3EQ51fZQoaAZoCWgPQwgKndfYpWltwJSGlFKUaBVLWmgWR0AkrtCRfWtmdX2UKGgGaAloD0MIHQHcLF7QW8CUhpRSlGgVS2VoFkdAJK7qyGBWgnV9lChoBmgJaA9DCKZHUz2ZLlfAlIaUUpRoFUttaBZHQCSu1IAfdRB1fZQoaAZoCWgPQwjUKCSZ1fVQwJSGlFKUaBVLTGgWR0AksQjD8+A3dX2UKGgGaAloD0MILLr1mh6ZWcCUhpRSlGgVS2NoFkdAJLD7Q9ic5XV9lChoBmgJaA9DCPX3UnjQNl/AlIaUUpRoFUtkaBZHQCS0auOjqOd1fZQoaAZoCWgPQwhPWyOCceVbwJSGlFKUaBVLYGgWR0Akt876pHZsdX2UKGgGaAloD0MIBYcXRKRJXsCUhpRSlGgVS1ZoFkdAJLmRNh3JP3V9lChoBmgJaA9DCFewjXiyiUbAlIaUUpRoFUtRaBZHQCS7CiyprDZ1fZQoaAZoCWgPQwh6GjBI+uwyQJSGlFKUaBVLdmgWR0AkvOzIFNcodX2UKGgGaAloD0MIR5IgXAF7UcCUhpRSlGgVS05oFkdAJL8mKIi1RnV9lChoBmgJaA9DCNLlzeFa8FfAlIaUUpRoFUuUaBZHQCS/PTodMkB1fZQoaAZoCWgPQwhuh4bFKG5vwJSGlFKUaBVLcWgWR0AkxMHKOktVdX2UKGgGaAloD0MIdAmH3uI6UMCUhpRSlGgVS0NoFkdAJOF9jPOY6XV9lChoBmgJaA9DCL5Nf/YjilfAlIaUUpRoFUtUaBZHQCThVMmF8G91fZQoaAZoCWgPQwjEzalkALJVwJSGlFKUaBVLUWgWR0Ak5yBkI5YHdX2UKGgGaAloD0MI1SKimLz1RsCUhpRSlGgVS1BoFkdAJOrf1pTMq3V9lChoBmgJaA9DCLiTiPAvm1TAlIaUUpRoFUtHaBZHQCTroUzsQd11fZQoaAZoCWgPQwjowd1ZuxdawJSGlFKUaBVLUmgWR0Ak7LzwtrbhdX2UKGgGaAloD0MIbAiOy/i8dcCUhpRSlGgVS2BoFkdAJPGa6STyKHV9lChoBmgJaA9DCHO6LCY2KG/AlIaUUpRoFUtYaBZHQCT1hJAdGRV1fZQoaAZoCWgPQwhDVrd6zqxqwJSGlFKUaBVLZmgWR0Ak+/fO2RaHdX2UKGgGaAloD0MIdNAlHHq9UMCUhpRSlGgVS0xoFkdAJP6F/QSi/XV9lChoBmgJaA9DCIbnpWJj5mHAlIaUUpRoFUtqaBZHQCUA0waisXB1fZQoaAZoCWgPQwgk7xzKUGdgwJSGlFKUaBVLZmgWR0AlCTakAPupdX2UKGgGaAloD0MIjgJEwQzyasCUhpRSlGgVS2loFkdAJQ4SQHRkVnV9lChoBmgJaA9DCKVMamhD74DAlIaUUpRoFUuDaBZHQCUeRDCxeLN1fZQoaAZoCWgPQwhPWOIBZYdrwJSGlFKUaBVLfWgWR0AlHjBl+VkddX2UKGgGaAloD0MInE8dq5QRZsCUhpRSlGgVS4poFkdAJSJ4SpR4yHV9lChoBmgJaA9DCLfRAN4CDVbAlIaUUpRoFUtTaBZHQCUuRV6u4gB1fZQoaAZoCWgPQwhzDwnf+5VbwJSGlFKUaBVLZmgWR0AlM0tyxRl6dX2UKGgGaAloD0MI9bwbCwp2XsCUhpRSlGgVS1xoFkdAJTRoZhrnDHV9lChoBmgJaA9DCGixFMlX61XAlIaUUpRoFUtNaBZHQCU5pvgm7at1fZQoaAZoCWgPQwjLD1zlCdtcwJSGlFKUaBVLW2gWR0AlOozeoDPodX2UKGgGaAloD0MICW6kbJGVXsCUhpRSlGgVS3BoFkdAJUEhzNliB3V9lChoBmgJaA9DCEG62LRSzGLAlIaUUpRoFUtiaBZHQCVN/4Irvst1fZQoaAZoCWgPQwi9HeG04PppwJSGlFKUaBVLhmgWR0AlTiF0xM37dX2UKGgGaAloD0MI746M1eZ3Z8CUhpRSlGgVS15oFkdAJVZuZTho/XV9lChoBmgJaA9DCNrKS/4ndzlAlIaUUpRoFUuFaBZHQCVXfwZwXIl1fZQoaAZoCWgPQwjgSnZsBBZawJSGlFKUaBVLXGgWR0AlWe/5+H8CdX2UKGgGaAloD0MIBvaYSGlkTsCUhpRSlGgVS0ZoFkdAJVxvegte2XV9lChoBmgJaA9DCFngK7r1/VrAlIaUUpRoFUtPaBZHQCVfXTVlPJt1fZQoaAZoCWgPQwhBgAwdO11XwJSGlFKUaBVLQWgWR0AlaHBUJfICdX2UKGgGaAloD0MIWIy61l7BbcCUhpRSlGgVS4VoFkdAJWwSSNfgJnV9lChoBmgJaA9DCPXZAdcVIVPAlIaUUpRoFUtQaBZHQCVvuZ1FH8V1fZQoaAZoCWgPQwgPe6GAbWdqwJSGlFKUaBVLp2gWR0AlfE3sHB1tdX2UKGgGaAloD0MIlUkNbQAnWcCUhpRSlGgVS3VoFkdAJX1hLGrCFnV9lChoBmgJaA9DCNY1Wg70wVXAlIaUUpRoFUtSaBZHQCV9Xo1UEPl1fZQoaAZoCWgPQwhfs1w2OgldwJSGlFKUaBVLTmgWR0AlgL6UJOWTdX2UKGgGaAloD0MI/FBpxMw6Q8CUhpRSlGgVS0FoFkdAJYJLVWjoIXV9lChoBmgJaA9DCO2A64oZeGfAlIaUUpRoFUtoaBZHQCWINkOI68x1fZQoaAZoCWgPQwgtQUZAhdtTwJSGlFKUaBVLZ2gWR0Ali/HHWBjGdX2UKGgGaAloD0MIBhIUP8apVMCUhpRSlGgVS0doFkdAJY5/kNnXd3V9lChoBmgJaA9DCBN/FHXmbF3AlIaUUpRoFUtJaBZHQCWPHzYmLLp1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVDwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMbi9Vc2Vycy9waGlsaXBwYmVyZ21hbm4vLm1pbmlmb3JnZTMvZW52cy9kZWVwLXJsL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxuL1VzZXJzL3BoaWxpcHBiZXJnbWFubi8ubWluaWZvcmdlMy9lbnZzL2RlZXAtcmwvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "macOS-12.6-arm64-arm-64bit Darwin Kernel Version 21.6.0: Mon Aug 22 20:19:52 PDT 2022; root:xnu-8020.140.49~2/RELEASE_ARM64_T6000", "Python": "3.10.6", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0", "GPU Enabled": "False", "Numpy": "1.23.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (457 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -189.65617973801855, "std_reward": 26.696594165748227, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-11-15T09:29:32.790859"}