Upload gradio_inference_t2i_lora.py
Browse files- gradio_inference_t2i_lora.py +59 -0
gradio_inference_t2i_lora.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import os
|
3 |
+
import torch
|
4 |
+
import gradio as gr
|
5 |
+
import numpy as np
|
6 |
+
|
7 |
+
from PIL import Image
|
8 |
+
|
9 |
+
from diffusers import StableDiffusionPipeline,UNet2DConditionModel
|
10 |
+
|
11 |
+
NEGATIVE_PROMPT = "worst quality, low quality, bad anatomy, watermark, text, blurry, cartoon, unreal"
|
12 |
+
|
13 |
+
unet = UNet2DConditionModel.from_pretrained("runwayml/stable-diffusion-v1-5",subfolder='unet').to("cuda")
|
14 |
+
|
15 |
+
|
16 |
+
|
17 |
+
# unet.load_lora_weights("./exp_output/celeba_finetune/checkpoint-20000", weight_name="pytorch_lora_weights.safetensors")
|
18 |
+
|
19 |
+
pipeline = StableDiffusionPipeline.from_pretrained(
|
20 |
+
"runwayml/stable-diffusion-v1-5",
|
21 |
+
unet=unet)
|
22 |
+
|
23 |
+
pipeline.load_lora_weights("./exp_output/celeba_finetune/checkpoint-20000", weight_name="pytorch_lora_weights.safetensors")
|
24 |
+
|
25 |
+
# Define a function to process input and return output
|
26 |
+
def generate_image(text,num_batch,is_use_lora,num_inference_steps):
|
27 |
+
# Process text to generate image
|
28 |
+
if is_use_lora:
|
29 |
+
pipeline.enable_lora()
|
30 |
+
else:
|
31 |
+
pipeline.disable_lora()
|
32 |
+
|
33 |
+
print('begin inference with text:', text, 'is_use_lora:', is_use_lora)
|
34 |
+
image = pipeline(text,
|
35 |
+
num_inference_steps=num_inference_steps,
|
36 |
+
num_images_per_prompt=num_batch,
|
37 |
+
negative_prompt=NEGATIVE_PROMPT).images
|
38 |
+
return image
|
39 |
+
|
40 |
+
|
41 |
+
with gr.Blocks() as demo:
|
42 |
+
|
43 |
+
with gr.Row():
|
44 |
+
with gr.Column():
|
45 |
+
with gr.Row():
|
46 |
+
is_use_lora = gr.Checkbox(label="Use LoRA", value=False)
|
47 |
+
num_batch = gr.Number(value=4,label="Number of batch")
|
48 |
+
num_inference_steps = gr.Number(value=20,label="Number of inference steps")
|
49 |
+
|
50 |
+
text_input = gr.Textbox(lines=2, label="Input text", value="A young woman with long hair and a big smile.")
|
51 |
+
generate_button = gr.Button(value="Generate image")
|
52 |
+
|
53 |
+
# image_out = gr.Image(label="Output image", height=512,width=512)
|
54 |
+
image_out = gr.Gallery(label="Generated images", show_label=False, elem_id="gallery", object_fit="contain", height="512")
|
55 |
+
|
56 |
+
generate_button.click(generate_image, inputs=[text_input,num_batch,is_use_lora,num_inference_steps], outputs=image_out)
|
57 |
+
|
58 |
+
demo.launch(server_port=7861)
|
59 |
+
|