phil329 commited on
Commit
e4f41be
1 Parent(s): f917a53

Upload gradio_inference_t2i_lora.py

Browse files
Files changed (1) hide show
  1. gradio_inference_t2i_lora.py +59 -0
gradio_inference_t2i_lora.py ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ import os
3
+ import torch
4
+ import gradio as gr
5
+ import numpy as np
6
+
7
+ from PIL import Image
8
+
9
+ from diffusers import StableDiffusionPipeline,UNet2DConditionModel
10
+
11
+ NEGATIVE_PROMPT = "worst quality, low quality, bad anatomy, watermark, text, blurry, cartoon, unreal"
12
+
13
+ unet = UNet2DConditionModel.from_pretrained("runwayml/stable-diffusion-v1-5",subfolder='unet').to("cuda")
14
+
15
+
16
+
17
+ # unet.load_lora_weights("./exp_output/celeba_finetune/checkpoint-20000", weight_name="pytorch_lora_weights.safetensors")
18
+
19
+ pipeline = StableDiffusionPipeline.from_pretrained(
20
+ "runwayml/stable-diffusion-v1-5",
21
+ unet=unet)
22
+
23
+ pipeline.load_lora_weights("./exp_output/celeba_finetune/checkpoint-20000", weight_name="pytorch_lora_weights.safetensors")
24
+
25
+ # Define a function to process input and return output
26
+ def generate_image(text,num_batch,is_use_lora,num_inference_steps):
27
+ # Process text to generate image
28
+ if is_use_lora:
29
+ pipeline.enable_lora()
30
+ else:
31
+ pipeline.disable_lora()
32
+
33
+ print('begin inference with text:', text, 'is_use_lora:', is_use_lora)
34
+ image = pipeline(text,
35
+ num_inference_steps=num_inference_steps,
36
+ num_images_per_prompt=num_batch,
37
+ negative_prompt=NEGATIVE_PROMPT).images
38
+ return image
39
+
40
+
41
+ with gr.Blocks() as demo:
42
+
43
+ with gr.Row():
44
+ with gr.Column():
45
+ with gr.Row():
46
+ is_use_lora = gr.Checkbox(label="Use LoRA", value=False)
47
+ num_batch = gr.Number(value=4,label="Number of batch")
48
+ num_inference_steps = gr.Number(value=20,label="Number of inference steps")
49
+
50
+ text_input = gr.Textbox(lines=2, label="Input text", value="A young woman with long hair and a big smile.")
51
+ generate_button = gr.Button(value="Generate image")
52
+
53
+ # image_out = gr.Image(label="Output image", height=512,width=512)
54
+ image_out = gr.Gallery(label="Generated images", show_label=False, elem_id="gallery", object_fit="contain", height="512")
55
+
56
+ generate_button.click(generate_image, inputs=[text_input,num_batch,is_use_lora,num_inference_steps], outputs=image_out)
57
+
58
+ demo.launch(server_port=7861)
59
+