--- license: mit datasets: - philipphager/baidu-ultr-pretrain - philipphager/baidu-ultr_uva-mlm-ctr metrics: - log-likelihood - dcg@1 - dcg@3 - dcg@5 - dcg@10 - ndcg@10 - mrr@10 co2_eq_emissions: emissions: 2090 source: "Calculated using the [ML CO2 impact calculator](https://mlco2.github.io/impact/#compute), training for 4 x 45 hours with a carbon efficiency of 0.029 kg/kWh. You can inspect the carbon efficiency of the French national grid provider here: https://www.rte-france.com/eco2mix/les-emissions-de-co2-par-kwh-produit-en-france" training_type: "Pre-training" geographical_location: "Grenoble, France" hardware_used: "4 NVIDIA H100-80GB GPUs" --- # Listwise MonoBERT trained on Baidu-ULTR using the Dual Learning Algorithm (DLA) A flax-based MonoBERT cross encoder trained on the [Baidu-ULTR](https://arxiv.org/abs/2207.03051) dataset with a **listwise DLA objective on clicks**. Following [Ai et al.](https://arxiv.org/abs/1804.05938), the dual learning algorithm jointly infers item relevance (using a BERT model) and position bias (in our case, a single embedding parameter per rank), both by optimizing a **listwise softmax cross-entropy loss**. For more info, [read our paper](https://arxiv.org/abs/2404.02543) and [find the code for this model here](https://github.com/philipphager/baidu-bert-model). ## Test Results on Baidu-ULTR Ranking performance is measured in DCG, nDCG, and MRR on expert annotations (6,985 queries). Click prediction performance is measured in log-likelihood on one test partition of user clicks (≈297k queries). | Model | Log-likelihood | DCG@1 | DCG@3 | DCG@5 | DCG@10 | nDCG@10 | MRR@10 | |------------------------------------------------------------------------------------------------|----------------|-------|-------|-------|--------|---------|--------| | [Pointwise Naive](https://huggingface.co/philipphager/baidu-ultr_uva-bert_naive-pointwise) | 0.227 | 1.641 | 3.462 | 4.752 | 7.251 | 0.357 | 0.609 | | [Pointwise Two-Tower](https://huggingface.co/philipphager/baidu-ultr_uva-bert_twotower) | 0.218 | 1.629 | 3.471 | 4.822 | 7.456 | 0.367 | 0.607 | | [Pointwise IPS](https://huggingface.co/philipphager/baidu-ultr_uva-bert_ips-pointwise) | 0.222 | 1.295 | 2.811 | 3.977 | 6.296 | 0.307 | 0.534 | | [Listwise Naive](https://huggingface.co/philipphager/baidu-ultr_uva-bert_naive-listwise) | - | 1.947 | 4.108 | 5.614 | 8.478 | 0.405 | 0.639 | | [Listwise IPS](https://huggingface.co/philipphager/baidu-ultr_uva-bert_ips-listwise) | - | 1.671 | 3.530 | 4.873 | 7.450 | 0.361 | 0.603 | | [Listwise DLA](https://huggingface.co/philipphager/baidu-ultr_uva-bert_dla) | - | 1.796 | 3.730 | 5.125 | 7.802 | 0.377 | 0.615 | ## Usage Here is an example of downloading the model and calling it for inference on a mock batch of input data. For more details on how to use the model on the Baidu-ULTR dataset, take a look at our [training](https://github.com/philipphager/baidu-bert-model/blob/main/main.py) and [evaluation scripts](https://github.com/philipphager/baidu-bert-model/blob/main/eval.py) in our code repository. ```Python import jax.numpy as jnp from src.model import DLACrossEncoder model = DLACrossEncoder.from_pretrained( "philipphager/baidu-ultr_uva-bert_dla", ) # Mock batch following Baidu-ULTR with 4 documents, each with 8 tokens batch = { # Query_id for each document "query_id": jnp.array([1, 1, 1, 1]), # Document position in SERP "positions": jnp.array([1, 2, 3, 4]), # Token ids for: [CLS] Query [SEP] Document "tokens": jnp.array([ [2, 21448, 21874, 21436, 1, 20206, 4012, 2860], [2, 21448, 21874, 21436, 1, 16794, 4522, 2082], [2, 21448, 21874, 21436, 1, 20206, 10082, 9773], [2, 21448, 21874, 21436, 1, 2618, 8520, 2860], ]), # Specify if a token id belongs to the query (0) or document (1) "token_types": jnp.array([ [0, 0, 0, 0, 1, 1, 1, 1], [0, 0, 0, 0, 1, 1, 1, 1], [0, 0, 0, 0, 1, 1, 1, 1], [0, 0, 0, 0, 1, 1, 1, 1], ]), # Marks if a token should be attended to (True) or ignored, e.g., padding tokens (False): "attention_mask": jnp.array([ [True, True, True, True, True, True, True, True], [True, True, True, True, True, True, True, True], [True, True, True, True, True, True, True, True], [True, True, True, True, True, True, True, True], ]), } outputs = model(batch, train=False) print(outputs) ``` ## Reference ``` @inproceedings{Hager2024BaiduULTR, author = {Philipp Hager and Romain Deffayet and Jean-Michel Renders and Onno Zoeter and Maarten de Rijke}, title = {Unbiased Learning to Rank Meets Reality: Lessons from Baidu’s Large-Scale Search Dataset}, booktitle = {Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR`24)}, organization = {ACM}, year = {2024}, } ```