Transformers
Safetensors
bert
Inference Endpoints
philipphager commited on
Commit
044ea52
1 Parent(s): 9679a8a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +3 -2
README.md CHANGED
@@ -21,7 +21,8 @@ A flax-based MonoBERT cross encoder trained on the [Baidu-ULTR](https://arxiv.or
21
  |-----------------|----------------|--------|--------|--------|--------|---------|--------|
22
  | Pointwise Naive | 0.2272 | 1.6836 | 3.5616 | 4.8822 | 7.4244 | 0.3640 | 0.6096 |
23
  | Pointwise IPS | 0.2436 | 0.8842 | 2.0510 | 2.9535 | 4.8816 | 0.2363 | 0.4472 |
24
- | **Naive Listwise** | **0.7535** | **1.9738** | **4.1609** | **5.6861** | **8.5432** | **0.4091** | **0.6436** |
 
25
 
26
  ## Usage
27
  Here is an example of downloading the model and calling it for inference on a mock batch of input data. For more details on how to use the model on the Baidu-ULTR dataset, take a look at our [training](https://github.com/philipphager/baidu-bert-model/blob/main/main.py) and [evaluation scripts](https://github.com/philipphager/baidu-bert-model/blob/main/eval.py) in our code repository.
@@ -47,7 +48,7 @@ batch = {
47
  [2, 21448, 21874, 21436, 1, 16794, 4522, 2082],
48
  [2, 21448, 21874, 21436, 1, 20206, 10082, 9773],
49
  [2, 21448, 21874, 21436, 1, 2618, 8520, 2860],
50
- ]),
51
  # Specify if a token id belongs to the query (0) or document (1)
52
  "token_types": jnp.array([
53
  [0, 0, 0, 0, 1, 1, 1, 1],
 
21
  |-----------------|----------------|--------|--------|--------|--------|---------|--------|
22
  | Pointwise Naive | 0.2272 | 1.6836 | 3.5616 | 4.8822 | 7.4244 | 0.3640 | 0.6096 |
23
  | Pointwise IPS | 0.2436 | 0.8842 | 2.0510 | 2.9535 | 4.8816 | 0.2363 | 0.4472 |
24
+ | **Listwise Naive** | **0.7535** | **1.9738** | **4.1609** | **5.6861** | **8.5432** | **0.4091** | **0.6436** |
25
+ | Listwise IPS | 1.2193 | 1.7466 | 3.6378 | 4.9797 | 7.5790 | 0.3665 | 0.6112 |
26
 
27
  ## Usage
28
  Here is an example of downloading the model and calling it for inference on a mock batch of input data. For more details on how to use the model on the Baidu-ULTR dataset, take a look at our [training](https://github.com/philipphager/baidu-bert-model/blob/main/main.py) and [evaluation scripts](https://github.com/philipphager/baidu-bert-model/blob/main/eval.py) in our code repository.
 
48
  [2, 21448, 21874, 21436, 1, 16794, 4522, 2082],
49
  [2, 21448, 21874, 21436, 1, 20206, 10082, 9773],
50
  [2, 21448, 21874, 21436, 1, 2618, 8520, 2860],
51
+ ]),
52
  # Specify if a token id belongs to the query (0) or document (1)
53
  "token_types": jnp.array([
54
  [0, 0, 0, 0, 1, 1, 1, 1],