--- license: mit datasets: - philipphager/baidu-ultr-pretrain - philipphager/baidu-ultr_uva-mlm-ctr metrics: - dcg@1 - dcg@3 - dcg@5 - dcg@10 - ndcg@10 - mrr@10 --- # Naive Listwise MonoBERT trained on Baidu-ULTR A flax-based MonoBERT cross encoder trained on the Baidu-ULTR dataset with a **listwise softmax cross-entropy loss on clicks**. The loss is called "naive" as we use user clicks as a signal of relevance without any additional position bias correction. For more info, read our paper here. ## Usage ```Python import jax.numpy as jnp from src.model import ListwiseCrossEncoder model = ListwiseCrossEncoder.from_pretrained( "philipphager/baidu-ultr_uva-bert_naive-listwise", ) # Mock batch following Baidu-ULTR with 4 documents, each with 8 tokens batch = { # Query_id for each document "query_id": jnp.array([1, 1, 1, 1]), # Document position in SERP "positions": jnp.array([1, 2, 3, 4]), # Token ids for: [CLS] Query [SEP] Document "tokens": jnp.array([ [2, 21448, 21874, 21436, 1, 20206, 4012, 2860], [2, 21448, 21874, 21436, 1, 16794, 4522, 2082], [2, 21448, 21874, 21436, 1, 20206, 10082, 9773], [2, 21448, 21874, 21436, 1, 2618, 8520, 2860], ]), # Specify if a token id belongs to the query (0) or document (1) "token_types": jnp.array([ [0, 0, 0, 0, 1, 1, 1, 1], [0, 0, 0, 0, 1, 1, 1, 1], [0, 0, 0, 0, 1, 1, 1, 1], [0, 0, 0, 0, 1, 1, 1, 1], ]), # Marks if a token should be attended to (True) or ignored, e.g., padding tokens (False): "attention_mask": jnp.array([ [True, True, True, True, True, True, True, True], [True, True, True, True, True, True, True, True], [True, True, True, True, True, True, True, True], [True, True, True, True, True, True, True, True], ]), } outputs = model(batch) print(outputs) ``` ## Test Results on Baidu-ULTR Expert Annotations | Model | log-likelihood | DCG@1 | DCG@3 | DCG@5 | DCG@10 | nDCG@10 | MRR@10 | |---------------------|----------------|--------|--------|--------|--------|---------|--------| | Naive Pointwise | 0.2272 | 1.6836 | 3.5616 | 4.8822 | 7.4244 | 0.3640 | 0.6096 | | **Naive Listwise** | - | 1.9738 | 4.1609 | 5.6861 | 8.5432 | 0.4091 | 0.6436 |