File size: 7,933 Bytes
79540ca
 
18b336a
79540ca
 
 
 
 
 
84d3419
3d05f28
 
 
 
accef2c
 
 
3d05f28
78e20b3
 
accef2c
3d05f28
accef2c
 
20cced4
3d05f28
20cced4
 
3d05f28
20cced4
 
3d05f28
20cced4
 
3d05f28
20cced4
 
3d05f28
20cced4
 
3d05f28
20cced4
3d05f28
 
 
 
 
 
 
 
 
20cced4
3d05f28
20cced4
3d05f28
20cced4
 
3d05f28
20cced4
3d05f28
20cced4
 
3d05f28
20cced4
3d05f28
20cced4
 
3d05f28
20cced4
3d05f28
20cced4
 
3d05f28
20cced4
3d05f28
20cced4
 
3d05f28
20cced4
3d05f28
20cced4
8ac3c1e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79540ca
 
 
 
32d5883
 
e49b3d6
32d5883
 
79540ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc1cf6c
79540ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
---
language: en
license: mit
tags:
- sagemaker
- bart
- summarization
datasets:
- samsum
widget:
- text: "Jeff: Can I train a \U0001F917 Transformers model on Amazon SageMaker? \n\
    Philipp: Sure you can use the new Hugging Face Deep Learning Container. \nJeff:\
    \ ok.\nJeff: and how can I get started? \nJeff: where can I find documentation?\
    \ \nPhilipp: ok, ok you can find everything here. https://huggingface.co/blog/the-partnership-amazon-sagemaker-and-hugging-face\n"
model-index:
- name: bart-large-cnn-samsum
  results:
  - task:
      type: summarization
      name: Summarization
    dataset:
      name: 'SAMSum Corpus: A Human-annotated Dialogue Dataset for Abstractive Summarization'
      type: samsum
    metrics:
    - type: rogue-1
      value: 42.621
      name: Validation ROGUE-1
    - type: rogue-2
      value: 21.9825
      name: Validation ROGUE-2
    - type: rogue-l
      value: 33.034
      name: Validation ROGUE-L
    - type: rogue-1
      value: 41.3174
      name: Test ROGUE-1
    - type: rogue-2
      value: 20.8716
      name: Test ROGUE-2
    - type: rogue-l
      value: 32.1337
      name: Test ROGUE-L
  - task:
      type: summarization
      name: Summarization
    dataset:
      name: samsum
      type: samsum
      config: samsum
      split: test
    metrics:
    - type: rouge
      value: 41.3282
      name: ROUGE-1
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZTYzNzZkZDUzOWQzNGYxYTJhNGE4YWYyZjA0NzMyOWUzMDNhMmVhYzY1YTM0ZTJhYjliNGE4MDZhMjhhYjRkYSIsInZlcnNpb24iOjF9.OOM6l3v5rJCndmUIJV-2SDh2NjbPo5IgQOSL-Ju1Gwbi1voL5amsDEDOelaqlUBE3n55KkUsMLZhyn66yWxZBQ
    - type: rouge
      value: 20.8755
      name: ROUGE-2
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMWZiODFiYWQzY2NmOTc5YjA3NTI0YzQ1MzQ0ODk2NjgyMmVlMjA5MjZiNTJkMGRmZGEzN2M3MDNkMjkxMDVhYSIsInZlcnNpb24iOjF9.b8cPk2-IL24La3Vd0hhtii4tRXujh5urAwy6IVeTWHwYfXaURyC2CcQOWtlOx5bdO5KACeaJFrFBCGgjk-VGCQ
    - type: rouge
      value: 32.1353
      name: ROUGE-L
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYWNmYzdiYWQ2ZWRkYzRiMGMxNWUwODgwZTdkY2NjZTc1NWE5NTFiMzU0OTU1N2JjN2ExYWQ2NGZkNjk5OTc4YSIsInZlcnNpb24iOjF9.Fzv4p-TEVicljiCqsBJHK1GsnE_AwGqamVmxTPI0WBNSIhZEhliRGmIL_z1pDq6WOzv3GN2YUGvhowU7GxnyAQ
    - type: rouge
      value: 38.401
      name: ROUGE-LSUM
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNGI4MWY0NWMxMmQ0ODQ5MDhiNDczMDAzYzJkODBiMzgzYWNkMWM2YTZkZDJmNWJiOGQ3MmNjMGViN2UzYWI2ZSIsInZlcnNpb24iOjF9.7lw3h5k5lJ7tYFLZGUtLyDabFYd00l6ByhmvkW4fykocBy9Blyin4tdw4Xps4DW-pmrdMLgidHxBWz5MrSx1Bw
    - type: loss
      value: 1.4297215938568115
      name: loss
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMzI0ZWNhNDM5YTViZDMyZGJjMDA1ZWFjYzNhOTdlOTFiNzhhMDBjNmM2MjA3ZmRkZjJjMjEyMGY3MzcwOTI2NyIsInZlcnNpb24iOjF9.oNaZsAtUDqGAqoZWJavlcW7PKx1AWsnkbhaQxadpOKk_u7ywJJabvTtzyx_DwEgZslgDETCf4MM-JKitZKjiDA
    - type: gen_len
      value: 60.0757
      name: gen_len
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYTgwYWYwMDRkNTJkMDM5N2I2MWNmYzQ3OWM1NDJmODUyZGViMGE4ZTdkNmIwYWM2N2VjZDNmN2RiMDE4YTYyYiIsInZlcnNpb24iOjF9.PbXTcNYX_SW-BuRQEcqyc21M7uKrOMbffQSAK6k2GLzTVRrzZxsDC57ktKL68zRY8fSiRGsnknOwv-nAR6YBCQ
  - task:
      type: summarization
      name: Summarization
    dataset:
      name: cnn_dailymail
      type: cnn_dailymail
      config: 3.0.0
      split: test
    metrics:
    - type: rouge
      value: 43.3283
      name: ROUGE-1
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMWM1NjRmZTI5OTNlNTZiODU5NTA5NzFjMmExY2FmYTJkYzAyZTc2ODcxMzFiZTUxZTg1M2RlNDI1Y2YyZGMyYSIsInZlcnNpb24iOjF9.s8gij8JC_ik7RuPnx82J9HStISFL8Nf3m4tJicqN1ljipZT5nH8lQddAFr9xkhOx3itw0_kLCRiGoiSfUSE_BA
    - type: rouge
      value: 19.914
      name: ROUGE-2
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiN2RiNjU4ZDcwYWEyYWFlYWI5MzQxMmEwZDA5YzFjMTMxNzQ0ZjQ2Nzk1ZDQwNTI4ZWVhZGVhMTM2YjAxNWNhOSIsInZlcnNpb24iOjF9.OpLoPC2EorRZpfm0bIoEOhAJOxOugw9EsP1kv-amFKifCVdeWvQZrq2IfxqZGFn_212O-mbISaDbZR_eQnnJDw
    - type: rouge
      value: 29.6674
      name: ROUGE-L
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiY2NkMmU5YjZmOTk5NzQ1ODlkMTU4MTRhZWJlZGZiMDU0NzBmMWZlMTc1YWU0MGZkZTE4YjUyMjk4YzhmOGRlMyIsInZlcnNpb24iOjF9.fYhNmott8hWa1h9NrclREPzO2pJnTvVHmCNksk4-ZyX1kmc0nJwTrlPrZNnL1zxNPe9SsY9g5vdlaagQyDafCA
    - type: rouge
      value: 40.2164
      name: ROUGE-LSUM
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYjE5YWMyYzI2MTlmYTg1ZmU5N2I0YmJhMWI3NmNjNGEzZGFkOTdjZWFhMDBhZDlkZTI3YzE1MTQyZGZlNjQwNCIsInZlcnNpb24iOjF9.HxXBB8FIH1WaSCtIEww4zaJD2BOlWcmWe1K4QZd3_j5o-Q3G8-a6ZIW8YORNW7dIkX8t2hs6oKXumOB-eHYeAA
    - type: loss
      value: 2.9701931476593018
      name: loss
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiOTk4YzMzOWYwYTZlZmU4ZDcyYzBlZWM4ZWZlODU4YWUwOGQ4NWYyODVhYTMwMGUyNDhjNTkyODAwMjgxNDhmZiIsInZlcnNpb24iOjF9.ZTVL8gUVBU42M_sO8wJjIa7taBgotk5PhFfmN6T23vropZyp_gjazYjVNrWDU1eRO0unonfphPdkOHwyqXygAw
    - type: gen_len
      value: 83.6076
      name: gen_len
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZTRmMWFjNGJlYWNhOTgzZTY1MDQ4MGIwYWM1ZGNiYTExZTc2ODlkNjZmZWRmZWJlMmY3YjNhMzU1ZjZkZjdiNSIsInZlcnNpb24iOjF9.Mlc1c9wpqt-AJIDz9WpdOASzXNlJHqJebCAXQznjOVTG1Bi8p5N-GOzqCUl93jVqyWWIMV9AVFBmQKoah5SIAg
---

## `bart-large-cnn-samsum`

> If you want to use the model you should try a newer fine-tuned FLAN-T5 version [philschmid/flan-t5-base-samsum](https://huggingface.co/philschmid/flan-t5-base-samsum) out socring the BART version with `+6` on `ROGUE1` achieving `47.24`.

# TRY [philschmid/flan-t5-base-samsum](https://huggingface.co/philschmid/flan-t5-base-samsum)


This model was trained using Amazon SageMaker and the new Hugging Face Deep Learning container.

For more information look at:
- [🤗 Transformers Documentation: Amazon SageMaker](https://huggingface.co/transformers/sagemaker.html)
- [Example Notebooks](https://github.com/huggingface/notebooks/tree/master/sagemaker)
- [Amazon SageMaker documentation for Hugging Face](https://docs.aws.amazon.com/sagemaker/latest/dg/hugging-face.html)
- [Python SDK SageMaker documentation for Hugging Face](https://sagemaker.readthedocs.io/en/stable/frameworks/huggingface/index.html)
- [Deep Learning Container](https://github.com/aws/deep-learning-containers/blob/master/available_images.md#huggingface-training-containers)

## Hyperparameters
```json
{
    "dataset_name": "samsum",
    "do_eval": true,
    "do_predict": true,
    "do_train": true,
    "fp16": true,
    "learning_rate": 5e-05,
    "model_name_or_path": "facebook/bart-large-cnn",
    "num_train_epochs": 3,
    "output_dir": "/opt/ml/model",
    "per_device_eval_batch_size": 4,
    "per_device_train_batch_size": 4,
    "predict_with_generate": true,
    "seed": 7
}
```

## Usage
```python
from transformers import pipeline
summarizer = pipeline("summarization", model="philschmid/bart-large-cnn-samsum")

conversation = '''Jeff: Can I train a 🤗 Transformers model on Amazon SageMaker? 
Philipp: Sure you can use the new Hugging Face Deep Learning Container. 
Jeff: ok.
Jeff: and how can I get started? 
Jeff: where can I find documentation? 
Philipp: ok, ok you can find everything here. https://huggingface.co/blog/the-partnership-amazon-sagemaker-and-hugging-face                                           
'''
summarizer(conversation)
```

## Results

| key | value |
| --- | ----- |
| eval_rouge1 | 42.621 |
| eval_rouge2 | 21.9825 |
| eval_rougeL | 33.034 |
| eval_rougeLsum | 39.6783 |
| test_rouge1 | 41.3174 |
| test_rouge2 | 20.8716 |
| test_rougeL | 32.1337 |
| test_rougeLsum | 38.4149 |