librarian-bot's picture
Librarian Bot: Add base_model information to model
bac2b1f
|
raw
history blame
2.36 kB
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- amazon_reviews_multi
metrics:
- accuracy
- f1
base_model: distilbert-base-multilingual-cased
model-index:
- name: distilbert-base-multilingual-cased-sentiment-2
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: amazon_reviews_multi
type: amazon_reviews_multi
args: all_languages
metrics:
- type: accuracy
value: 0.7475666666666667
name: Accuracy
- type: f1
value: 0.7475666666666667
name: F1
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-multilingual-cased-sentiment-2
This model is a fine-tuned version of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) on the amazon_reviews_multi dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6067
- Accuracy: 0.7476
- F1: 0.7476
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.00024
- train_batch_size: 16
- eval_batch_size: 16
- seed: 33
- distributed_type: sagemaker_data_parallel
- num_devices: 8
- total_train_batch_size: 128
- total_eval_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|
| 0.6885 | 0.53 | 5000 | 0.6532 | 0.7217 | 0.7217 |
| 0.6411 | 1.07 | 10000 | 0.6348 | 0.7319 | 0.7319 |
| 0.6057 | 1.6 | 15000 | 0.6186 | 0.7387 | 0.7387 |
| 0.5844 | 2.13 | 20000 | 0.6236 | 0.7449 | 0.7449 |
| 0.549 | 2.67 | 25000 | 0.6067 | 0.7476 | 0.7476 |
### Framework versions
- Transformers 4.12.3
- Pytorch 1.9.1
- Datasets 1.15.1
- Tokenizers 0.10.3