|
import torch |
|
from peft import AutoPeftModelForCausalLM |
|
from transformers import AutoTokenizer, pipeline |
|
|
|
peft_model_id = "philschmid/gemma-7b-dolly-chatml" |
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(peft_model_id) |
|
model = AutoPeftModelForCausalLM.from_pretrained(peft_model_id, device_map="auto", torch_dtype=torch.float16) |
|
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer) |
|
eos_token = tokenizer("<|im_end|>",add_special_tokens=False)["input_ids"][0] |
|
print(f"eos_token: {eos_token}") |
|
|
|
|
|
messages = [ |
|
{ |
|
"role": "user", |
|
"content": "What is the capital of Germany? Explain why thats the case and if it was different in the past?" |
|
} |
|
] |
|
|
|
prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) |
|
outputs = pipe(prompt, max_new_tokens=1024, do_sample=True, temperature=0.7, top_k=50, top_p=0.95, eos_token_id=eos_token) |
|
|
|
print(f"prompt:\n {messages[0]['content']}") |
|
print(f"response:\n {outputs[0]['generated_text'][len(prompt):]}") |
|
|
|
|
|
messages = [ |
|
{ |
|
"role": "user", |
|
"content": "In a town, 60% of the population are adults. Among the adults, 30% have a pet dog and 40% have a pet cat. What percentage of the total population has a pet dog?" |
|
} |
|
] |
|
|
|
prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) |
|
outputs = pipe(prompt, max_new_tokens=1024, do_sample=True, temperature=0.7, top_k=50, top_p=0.95, eos_token_id=eos_token) |
|
|
|
print(f"prompt:\n {messages[0]['content']}") |
|
print(f"response:\n {outputs[0]['generated_text'][len(prompt):]}") |
|
|