--- license: openrail++ tags: - stable-diffusion - stable-diffusion-diffusers - text-guided-to-image-inpainting - endpoints-template thumbnail: "https://huggingface.co/philschmid/stable-diffusion-2-inpainting-endpoint/resolve/main/Stable%20Diffusion%20Inference%20endpoints%20-%20inpainting.png" --- # Fork of [stabilityai/stable-diffusion-2-inpainting](https://huggingface.co/stabilityai/stable-diffusion-2-inpainting) > Stable Diffusion is a latent text-to-image diffusion model capable of generating photo-realistic images given any text input. > For more information about how Stable Diffusion functions, please have a look at [🤗's Stable Diffusion with 🧨Diffusers blog](https://huggingface.co/blog/stable_diffusion). For more information about the model, license and limitations check the original model card at [stabilityai/stable-diffusion-2-inpainting](https://huggingface.co/stabilityai/stable-diffusion-2-inpainting). --- This repository implements a custom `handler` task for `text-guided-to-image-inpainting` for 🤗 Inference Endpoints. The code for the customized pipeline is in the [handler.py](https://huggingface.co/philschmid/stable-diffusion-2-inpainting-endpoint/blob/main/handler.py). There is also a [notebook](https://huggingface.co/philschmid/stable-diffusion-2-inpainting-endpoint/blob/main/create_handler.ipynb) included, on how to create the `handler.py` ![thubmnail](Stable%20Diffusion%20Inference%20endpoints%20-%20inpainting.png) ### expected Request payload ```json { "inputs": "A prompt used for image generation", "image" : "iVBORw0KGgoAAAANSUhEUgAAAgAAAAIACAIAAAB7GkOtAAAABGdBTUEAALGPC", "mask_image": "iVBORw0KGgoAAAANSUhEUgAAAgAAAAIACAIAAAB7GkOtAAAABGdBTUEAALGPC", } ``` below is an example on how to run a request using Python and `requests`. ## Run Request ```python import json from typing import List import requests as r import base64 from PIL import Image from io import BytesIO ENDPOINT_URL = "" HF_TOKEN = "" # helper image utils def encode_image(image_path): with open(image_path, "rb") as i: b64 = base64.b64encode(i.read()) return b64.decode("utf-8") def predict(prompt, image, mask_image): image = encode_image(image) mask_image = encode_image(mask_image) # prepare sample payload request = {"inputs": prompt, "image": image, "mask_image": mask_image} # headers headers = { "Authorization": f"Bearer {HF_TOKEN}", "Content-Type": "application/json", "Accept": "image/png" # important to get an image back } response = r.post(ENDPOINT_URL, headers=headers, json=payload) img = Image.open(BytesIO(response.content)) return img prediction = predict( prompt="Face of a bengal cat, high resolution, sitting on a park bench", image="dog.png", mask_image="mask_dog.png" ) ``` expected output ![sample](result.png)