Commit
•
56d3072
1
Parent(s):
f35b460
Upload create_handler.ipynb
Browse files- create_handler.ipynb +275 -0
create_handler.ipynb
ADDED
@@ -0,0 +1,275 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"metadata": {},
|
6 |
+
"source": [
|
7 |
+
"## Setup & Installation"
|
8 |
+
]
|
9 |
+
},
|
10 |
+
{
|
11 |
+
"cell_type": "code",
|
12 |
+
"execution_count": 1,
|
13 |
+
"metadata": {},
|
14 |
+
"outputs": [
|
15 |
+
{
|
16 |
+
"name": "stdout",
|
17 |
+
"output_type": "stream",
|
18 |
+
"text": [
|
19 |
+
"Overwriting requirements.txt\n"
|
20 |
+
]
|
21 |
+
}
|
22 |
+
],
|
23 |
+
"source": [
|
24 |
+
"%%writefile requirements.txt\n",
|
25 |
+
"diffusers==0.2.4"
|
26 |
+
]
|
27 |
+
},
|
28 |
+
{
|
29 |
+
"cell_type": "code",
|
30 |
+
"execution_count": null,
|
31 |
+
"metadata": {},
|
32 |
+
"outputs": [],
|
33 |
+
"source": [
|
34 |
+
"!pip install -r requirements.txt --upgrade"
|
35 |
+
]
|
36 |
+
},
|
37 |
+
{
|
38 |
+
"cell_type": "markdown",
|
39 |
+
"metadata": {},
|
40 |
+
"source": [
|
41 |
+
"## 3. Create Custom Handler for Inference Endpoints\n"
|
42 |
+
]
|
43 |
+
},
|
44 |
+
{
|
45 |
+
"cell_type": "code",
|
46 |
+
"execution_count": 10,
|
47 |
+
"metadata": {},
|
48 |
+
"outputs": [
|
49 |
+
{
|
50 |
+
"data": {
|
51 |
+
"text/plain": [
|
52 |
+
"device(type='cuda')"
|
53 |
+
]
|
54 |
+
},
|
55 |
+
"execution_count": 10,
|
56 |
+
"metadata": {},
|
57 |
+
"output_type": "execute_result"
|
58 |
+
}
|
59 |
+
],
|
60 |
+
"source": [
|
61 |
+
"import torch\n",
|
62 |
+
"\n",
|
63 |
+
"device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')\n",
|
64 |
+
"device"
|
65 |
+
]
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"cell_type": "code",
|
69 |
+
"execution_count": 11,
|
70 |
+
"metadata": {},
|
71 |
+
"outputs": [],
|
72 |
+
"source": [
|
73 |
+
"if device.type != 'cuda':\n",
|
74 |
+
" raise ValueError(\"need to run on GPU\")"
|
75 |
+
]
|
76 |
+
},
|
77 |
+
{
|
78 |
+
"cell_type": "code",
|
79 |
+
"execution_count": 5,
|
80 |
+
"metadata": {},
|
81 |
+
"outputs": [
|
82 |
+
{
|
83 |
+
"name": "stdout",
|
84 |
+
"output_type": "stream",
|
85 |
+
"text": [
|
86 |
+
"Overwriting handler.py\n"
|
87 |
+
]
|
88 |
+
}
|
89 |
+
],
|
90 |
+
"source": [
|
91 |
+
"%%writefile handler.py\n",
|
92 |
+
"from typing import Dict, List, Any\n",
|
93 |
+
"import torch\n",
|
94 |
+
"from torch import autocast\n",
|
95 |
+
"from diffusers import StableDiffusionPipeline\n",
|
96 |
+
"import base64\n",
|
97 |
+
"from io import BytesIO\n",
|
98 |
+
"\n",
|
99 |
+
"\n",
|
100 |
+
"# set device\n",
|
101 |
+
"device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')\n",
|
102 |
+
"\n",
|
103 |
+
"if device.type != 'cuda':\n",
|
104 |
+
" raise ValueError(\"need to run on GPU\")\n",
|
105 |
+
"\n",
|
106 |
+
"class EndpointHandler():\n",
|
107 |
+
" def __init__(self, path=\"\"):\n",
|
108 |
+
" # load the optimized model\n",
|
109 |
+
" self.pipe = StableDiffusionPipeline.from_pretrained(path, torch_dtype=torch.float16)\n",
|
110 |
+
" self.pipe = self.pipe.to(device)\n",
|
111 |
+
"\n",
|
112 |
+
"\n",
|
113 |
+
" def __call__(self, data: Any) -> List[List[Dict[str, float]]]:\n",
|
114 |
+
" \"\"\"\n",
|
115 |
+
" Args:\n",
|
116 |
+
" data (:obj:):\n",
|
117 |
+
" includes the input data and the parameters for the inference.\n",
|
118 |
+
" Return:\n",
|
119 |
+
" A :obj:`dict`:. base64 encoded image\n",
|
120 |
+
" \"\"\"\n",
|
121 |
+
" inputs = data.pop(\"inputs\", data)\n",
|
122 |
+
" \n",
|
123 |
+
" # run inference pipeline\n",
|
124 |
+
" with autocast(device.type):\n",
|
125 |
+
" image = self.pipe(inputs, guidance_scale=7.5)[\"sample\"][0] \n",
|
126 |
+
" \n",
|
127 |
+
" # encode image as base 64\n",
|
128 |
+
" buffered = BytesIO()\n",
|
129 |
+
" image.save(buffered, format=\"JPEG\")\n",
|
130 |
+
" img_str = base64.b64encode(buffered.getvalue())\n",
|
131 |
+
"\n",
|
132 |
+
" # postprocess the prediction\n",
|
133 |
+
" return {\"image\": img_str.decode()}"
|
134 |
+
]
|
135 |
+
},
|
136 |
+
{
|
137 |
+
"cell_type": "markdown",
|
138 |
+
"metadata": {},
|
139 |
+
"source": [
|
140 |
+
"test custom pipeline"
|
141 |
+
]
|
142 |
+
},
|
143 |
+
{
|
144 |
+
"cell_type": "code",
|
145 |
+
"execution_count": 6,
|
146 |
+
"metadata": {},
|
147 |
+
"outputs": [
|
148 |
+
{
|
149 |
+
"data": {
|
150 |
+
"text/plain": [
|
151 |
+
"'1.11.0+cu113'"
|
152 |
+
]
|
153 |
+
},
|
154 |
+
"execution_count": 6,
|
155 |
+
"metadata": {},
|
156 |
+
"output_type": "execute_result"
|
157 |
+
}
|
158 |
+
],
|
159 |
+
"source": [
|
160 |
+
"import torch\n",
|
161 |
+
"\n",
|
162 |
+
"torch.__version__"
|
163 |
+
]
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"cell_type": "code",
|
167 |
+
"execution_count": 1,
|
168 |
+
"metadata": {},
|
169 |
+
"outputs": [
|
170 |
+
{
|
171 |
+
"name": "stderr",
|
172 |
+
"output_type": "stream",
|
173 |
+
"text": [
|
174 |
+
"ftfy or spacy is not installed using BERT BasicTokenizer instead of ftfy.\n"
|
175 |
+
]
|
176 |
+
}
|
177 |
+
],
|
178 |
+
"source": [
|
179 |
+
"from handler import EndpointHandler\n",
|
180 |
+
"\n",
|
181 |
+
"# init handler\n",
|
182 |
+
"my_handler = EndpointHandler(path=\".\")"
|
183 |
+
]
|
184 |
+
},
|
185 |
+
{
|
186 |
+
"cell_type": "code",
|
187 |
+
"execution_count": 6,
|
188 |
+
"metadata": {},
|
189 |
+
"outputs": [
|
190 |
+
{
|
191 |
+
"data": {
|
192 |
+
"application/vnd.jupyter.widget-view+json": {
|
193 |
+
"model_id": "376de150f16b4b4bb0c3ab8c513de5c0",
|
194 |
+
"version_major": 2,
|
195 |
+
"version_minor": 0
|
196 |
+
},
|
197 |
+
"text/plain": [
|
198 |
+
"0it [00:00, ?it/s]"
|
199 |
+
]
|
200 |
+
},
|
201 |
+
"metadata": {},
|
202 |
+
"output_type": "display_data"
|
203 |
+
}
|
204 |
+
],
|
205 |
+
"source": [
|
206 |
+
"import base64\n",
|
207 |
+
"from PIL import Image\n",
|
208 |
+
"from io import BytesIO\n",
|
209 |
+
"import json\n",
|
210 |
+
"\n",
|
211 |
+
"# helper decoder\n",
|
212 |
+
"def decode_base64_image(image_string):\n",
|
213 |
+
" base64_image = base64.b64decode(image_string)\n",
|
214 |
+
" buffer = BytesIO(base64_image)\n",
|
215 |
+
" return Image.open(buffer)\n",
|
216 |
+
"\n",
|
217 |
+
"# prepare sample payload\n",
|
218 |
+
"request = {\"inputs\": \"a high resulotion image of a macbook\"}\n",
|
219 |
+
"\n",
|
220 |
+
"# test the handler\n",
|
221 |
+
"pred = my_handler(request)"
|
222 |
+
]
|
223 |
+
},
|
224 |
+
{
|
225 |
+
"cell_type": "code",
|
226 |
+
"execution_count": 4,
|
227 |
+
"metadata": {},
|
228 |
+
"outputs": [],
|
229 |
+
"source": [
|
230 |
+
"decode_base64_image(pred[\"image\"]).save(\"sample.jpg\")"
|
231 |
+
]
|
232 |
+
},
|
233 |
+
{
|
234 |
+
"cell_type": "markdown",
|
235 |
+
"metadata": {},
|
236 |
+
"source": [
|
237 |
+
"![test](sample.jpg)"
|
238 |
+
]
|
239 |
+
},
|
240 |
+
{
|
241 |
+
"cell_type": "code",
|
242 |
+
"execution_count": null,
|
243 |
+
"metadata": {},
|
244 |
+
"outputs": [],
|
245 |
+
"source": []
|
246 |
+
}
|
247 |
+
],
|
248 |
+
"metadata": {
|
249 |
+
"kernelspec": {
|
250 |
+
"display_name": "Python 3.9.13 ('dev': conda)",
|
251 |
+
"language": "python",
|
252 |
+
"name": "python3"
|
253 |
+
},
|
254 |
+
"language_info": {
|
255 |
+
"codemirror_mode": {
|
256 |
+
"name": "ipython",
|
257 |
+
"version": 3
|
258 |
+
},
|
259 |
+
"file_extension": ".py",
|
260 |
+
"mimetype": "text/x-python",
|
261 |
+
"name": "python",
|
262 |
+
"nbconvert_exporter": "python",
|
263 |
+
"pygments_lexer": "ipython3",
|
264 |
+
"version": "3.9.13"
|
265 |
+
},
|
266 |
+
"orig_nbformat": 4,
|
267 |
+
"vscode": {
|
268 |
+
"interpreter": {
|
269 |
+
"hash": "f6dd96c16031089903d5a31ec148b80aeb0d39c32affb1a1080393235fbfa2fc"
|
270 |
+
}
|
271 |
+
}
|
272 |
+
},
|
273 |
+
"nbformat": 4,
|
274 |
+
"nbformat_minor": 2
|
275 |
+
}
|