File size: 3,043 Bytes
b5cd089 0960c46 b5cd089 0960c46 b5cd089 c487384 b5cd089 f10ab29 b5cd089 7251827 b5cd089 7251827 b5cd089 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 |
---
license: apache-2.0
base_model: microsoft/swin-tiny-patch4-window7-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: swin-tiny-patch4-window7-224-finetuned-wuhan
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.4
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# swin-tiny-patch4-window7-224-finetuned-wuhan
This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7953
- Accuracy: 0.4
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 3 | 0.7953 | 0.4 |
| No log | 2.0 | 6 | 0.9477 | 0.4 |
| No log | 3.0 | 9 | 1.0106 | 0.4 |
| 0.5883 | 4.0 | 12 | 1.4170 | 0.4 |
| 0.5883 | 5.0 | 15 | 1.7436 | 0.4 |
| 0.5883 | 6.0 | 18 | 2.5380 | 0.4 |
| 0.241 | 7.0 | 21 | 3.8803 | 0.4 |
| 0.241 | 8.0 | 24 | 2.4040 | 0.2222 |
| 0.241 | 9.0 | 27 | 3.9968 | 0.4 |
| 0.125 | 10.0 | 30 | 3.2731 | 0.4 |
| 0.125 | 11.0 | 33 | 3.2202 | 0.2222 |
| 0.125 | 12.0 | 36 | 4.7008 | 0.4 |
| 0.125 | 13.0 | 39 | 4.5588 | 0.3556 |
| 0.0766 | 14.0 | 42 | 4.5434 | 0.2444 |
| 0.0766 | 15.0 | 45 | 4.9792 | 0.2667 |
| 0.0766 | 16.0 | 48 | 5.4095 | 0.2667 |
| 0.0239 | 17.0 | 51 | 5.8507 | 0.2222 |
| 0.0239 | 18.0 | 54 | 6.1023 | 0.2222 |
| 0.0239 | 19.0 | 57 | 6.1666 | 0.2222 |
| 0.0129 | 20.0 | 60 | 6.1948 | 0.2222 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.1
- Tokenizers 0.13.3
|