--- library_name: transformers license: mit base_model: microsoft/deberta-v3-small tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: testhehehe results: [] --- # testhehehe This model is a fine-tuned version of [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) on the data/originality_aidetector dataset. It achieves the following results on the evaluation set: - Loss: 0.6675 - Accuracy: 0.667 - True Positive: 0.0 - False Negative: 1.0 - False Positive: 0.0 - True Negative: 1.0 - F1: 0.8002 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - total_train_batch_size: 64 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | True Positive | False Negative | False Positive | True Negative | F1 | |:-------------:|:------:|:----:|:---------------:|:--------:|:-------------:|:--------------:|:--------------:|:-------------:|:------:| | No log | 0.4375 | 7 | 0.7175 | 0.333 | 1.0 | 0.0 | 1.0 | 0.0 | 0.0 | | No log | 0.875 | 14 | 0.6894 | 0.679 | 0.0871 | 0.9129 | 0.0255 | 0.9745 | 0.802 | | No log | 1.3125 | 21 | 0.6765 | 0.667 | 0.0 | 1.0 | 0.0 | 1.0 | 0.8002 | | No log | 1.75 | 28 | 0.6675 | 0.667 | 0.0 | 1.0 | 0.0 | 1.0 | 0.8002 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.4.0+cu121 - Datasets 2.19.2 - Tokenizers 0.20.0