pierreguillou commited on
Commit
675d607
1 Parent(s): a6047ae

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +13 -14
README.md CHANGED
@@ -1,22 +1,21 @@
1
  ---
2
- language:
3
- - pt
4
  license: apache-2.0
5
  tags:
6
- - whisper-event
7
  - generated_from_trainer
 
8
  datasets:
9
  - mozilla-foundation/common_voice_11_0
10
  metrics:
11
  - wer
12
  model-index:
13
- - name: Whisper Medium Portuguese
14
  results:
15
  - task:
16
  name: Automatic Speech Recognition
17
  type: automatic-speech-recognition
18
  dataset:
19
- name: mozilla-foundation/common_voice_11_0 pt
20
  type: mozilla-foundation/common_voice_11_0
21
  config: pt
22
  split: test
@@ -30,24 +29,24 @@ model-index:
30
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
31
  should probably proofread and complete it, then remove this comment. -->
32
 
33
- # Whisper Medium Portuguese
34
 
35
- This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the mozilla-foundation/common_voice_11_0 pt dataset.
36
  It achieves the following results on the evaluation set:
37
  - Loss: 0.2628
38
  - Wer: 6.5987
39
 
40
- ## Model description
41
 
42
- More information needed
43
 
44
- ## Intended uses & limitations
45
 
46
- More information needed
47
 
48
- ## Training and evaluation data
49
 
50
- More information needed
51
 
52
  ## Training procedure
53
 
@@ -79,4 +78,4 @@ The following hyperparameters were used during training:
79
  - Transformers 4.26.0.dev0
80
  - Pytorch 1.13.0+cu117
81
  - Datasets 2.7.1.dev0
82
- - Tokenizers 0.13.2
 
1
  ---
2
+ language: pt
 
3
  license: apache-2.0
4
  tags:
 
5
  - generated_from_trainer
6
+ - whisper-event
7
  datasets:
8
  - mozilla-foundation/common_voice_11_0
9
  metrics:
10
  - wer
11
  model-index:
12
+ - name: openai/whisper-medium
13
  results:
14
  - task:
15
  name: Automatic Speech Recognition
16
  type: automatic-speech-recognition
17
  dataset:
18
+ name: mozilla-foundation/common_voice_11_0
19
  type: mozilla-foundation/common_voice_11_0
20
  config: pt
21
  split: test
 
29
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
30
  should probably proofread and complete it, then remove this comment. -->
31
 
32
+ # Portuguese Medium Whisper
33
 
34
+ This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the common_voice_11_0 dataset.
35
  It achieves the following results on the evaluation set:
36
  - Loss: 0.2628
37
  - Wer: 6.5987
38
 
39
+ ## Blog post
40
 
41
+ All information about this model in this blog post: [Speech-to-Text & IA | Transcreva qualquer áudio para o português com o Whisper (OpenAI)... sem nenhum custo!](https://medium.com/@pierre_guillou/speech-to-text-ia-transcreva-qualquer-%C3%A1udio-para-o-portugu%C3%AAs-com-o-whisper-openai-sem-ad0c17384681).
42
 
43
+ ## New SOTA
44
 
45
+ The Normalized WER in the [OpenAI Whisper article](https://cdn.openai.com/papers/whisper.pdf) with the [Common Voice 9.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_9_0) test dataset is 8.1.
46
 
47
+ As this test dataset is similar to the [Common Voice 11.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_11_0) test dataset used to evaluate our model (WER and WER Norm), it means that **our Portuguese Medium Whisper is better than the [Medium Whisper](https://huggingface.co/openai/whisper-medium) model at transcribing audios Portuguese in text** (and even better than the [Whisper Large](https://huggingface.co/openai/whisper-large) that has a WER Norm of 7.1!).
48
 
49
+ ![OpenAI results with Whisper Medium and Test dataset of Commons Voice 9.0](https://huggingface.co/pierreguillou/whisper-medium-portuguese/resolve/main/whisper_medium_portuguese_wer_commonvoice9.png)
50
 
51
  ## Training procedure
52
 
 
78
  - Transformers 4.26.0.dev0
79
  - Pytorch 1.13.0+cu117
80
  - Datasets 2.7.1.dev0
81
+ - Tokenizers 0.13.2