--- language: [] library_name: sentence-transformers tags: - sentence-transformers - sentence-similarity - feature-extraction - dataset_size:10K - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 768 tokens - **Similarity Function:** Cosine Similarity ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("sentence_transformers_model_id") # Run inference sentences = [ 'Salinity gradients in oceans affect local wildlife habitats.', 'The distribution of wildlife in different habitats has fascinated ecologists for decades.', '[SYNTAX] Bioenergy plants can convert agricultural waste into valuable electricity.', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Evaluation ### Metrics #### Semantic Similarity * Dataset: `custom-dev` * Evaluated with [EmbeddingSimilarityEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:-----------| | pearson_cosine | 0.9117 | | **spearman_cosine** | **0.8442** | | pearson_manhattan | 0.9157 | | spearman_manhattan | 0.8441 | | pearson_euclidean | 0.916 | | spearman_euclidean | 0.8446 | | pearson_dot | 0.9046 | | spearman_dot | 0.8328 | | pearson_max | 0.916 | | spearman_max | 0.8446 | #### Semantic Similarity * Dataset: `custom-test` * Evaluated with [EmbeddingSimilarityEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:-----------| | pearson_cosine | 0.9198 | | **spearman_cosine** | **0.8501** | | pearson_manhattan | 0.9282 | | spearman_manhattan | 0.8494 | | pearson_euclidean | 0.9284 | | spearman_euclidean | 0.8498 | | pearson_dot | 0.9141 | | spearman_dot | 0.8411 | | pearson_max | 0.9284 | | spearman_max | 0.8501 | ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 19,352 training samples * Columns: s1, s2, and label * Approximate statistics based on the first 1000 samples: | | s1 | s2 | label | |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:------------------------------------------------| | type | string | string | int | | details | | | | * Samples: | s1 | s2 | label | |:-----------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------|:---------------| | According to labeling theory, individuals are considered deviant once society has tagged them with that label. | Labeling theory posits that corporations become powerful when labeled as such by stakeholders. | 0 | | Employers must classify workers correctly as either employees or independent contractors to comply with tax and labor laws. | Employers must classify workers correctly as either employees or independent contractors to comply with tax and labor laws. | 1 | | Higher education institutions play a critical role in advancing research and innovation. | Advancement in research and innovation is significantly driven by the contributions of higher education institutions. | 1 | * Loss: [CosineSimilarityLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters: ```json { "loss_fct": "torch.nn.modules.loss.MSELoss" } ``` ### Evaluation Dataset #### Unnamed Dataset * Size: 2,419 evaluation samples * Columns: s1, s2, and label * Approximate statistics based on the first 1000 samples: | | s1 | s2 | label | |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:------------------------------------------------| | type | string | string | int | | details | | | | * Samples: | s1 | s2 | label | |:----------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------|:---------------| | Acoustic tomography is an innovative geophysical technique used to image the Earth's interior. | Acoustic tomography is an innovative geophysical technique used to image the Earth's interior. | 1 | | Urban areas frequently exhibit a different age distribution pattern compared to rural areas. | Urban areas frequently exhibit a different age distribution pattern compared to rural areas. | 1 | | Radiocarbon dating is a critical tool for assessing the duration of battery life in modern electronic devices. | Radiocarbon dating is a critical tool for assessing the duration of battery life in modern electronic devices. | 1 | * Loss: [CosineSimilarityLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters: ```json { "loss_fct": "torch.nn.modules.loss.MSELoss" } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `num_train_epochs`: 10 - `warmup_ratio`: 0.1 - `fp16`: True #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `learning_rate`: 5e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 10 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: True - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: proportional
### Training Logs | Epoch | Step | Training Loss | loss | custom-dev_spearman_cosine | custom-test_spearman_cosine | |:------:|:----:|:-------------:|:------:|:--------------------------:|:---------------------------:| | 0.3300 | 100 | 0.2961 | 0.1185 | 0.8063 | - | | 0.6601 | 200 | 0.0772 | 0.0504 | 0.8461 | - | | 0.9901 | 300 | 0.0502 | 0.0454 | 0.8486 | - | | 1.3201 | 400 | 0.0376 | 0.0402 | 0.8481 | - | | 1.6502 | 500 | 0.0344 | 0.0400 | 0.8501 | - | | 1.9802 | 600 | 0.0329 | 0.0390 | 0.8518 | - | | 2.3102 | 700 | 0.0185 | 0.0387 | 0.8496 | - | | 2.6403 | 800 | 0.0164 | 0.0371 | 0.8492 | - | | 2.9703 | 900 | 0.0179 | 0.0393 | 0.8428 | - | | 3.3003 | 1000 | 0.0099 | 0.0389 | 0.8466 | - | | 3.6304 | 1100 | 0.0092 | 0.0395 | 0.8480 | - | | 3.9604 | 1200 | 0.0101 | 0.0368 | 0.8492 | - | | 4.2904 | 1300 | 0.0067 | 0.0385 | 0.8474 | - | | 4.6205 | 1400 | 0.0056 | 0.0393 | 0.8456 | - | | 4.9505 | 1500 | 0.0068 | 0.0401 | 0.8466 | - | | 5.2805 | 1600 | 0.0041 | 0.0410 | 0.8462 | - | | 5.6106 | 1700 | 0.0043 | 0.0399 | 0.8469 | - | | 5.9406 | 1800 | 0.0039 | 0.0406 | 0.8463 | - | | 6.2706 | 1900 | 0.003 | 0.0400 | 0.8456 | - | | 6.6007 | 2000 | 0.0026 | 0.0416 | 0.8438 | - | | 6.9307 | 2100 | 0.0027 | 0.0420 | 0.8437 | - | | 7.2607 | 2200 | 0.0028 | 0.0424 | 0.8449 | - | | 7.5908 | 2300 | 0.0021 | 0.0422 | 0.8458 | - | | 7.9208 | 2400 | 0.002 | 0.0414 | 0.8451 | - | | 8.2508 | 2500 | 0.0015 | 0.0421 | 0.8451 | - | | 8.5809 | 2600 | 0.0015 | 0.0427 | 0.8451 | - | | 8.9109 | 2700 | 0.0016 | 0.0429 | 0.8444 | - | | 9.2409 | 2800 | 0.0011 | 0.0432 | 0.8442 | - | | 9.5710 | 2900 | 0.0014 | 0.0432 | 0.8444 | - | | 9.9010 | 3000 | 0.0011 | 0.0432 | 0.8442 | - | | 10.0 | 3030 | - | - | - | 0.8501 | ### Framework Versions - Python: 3.11.9 - Sentence Transformers: 3.0.0 - Transformers: 4.41.2 - PyTorch: 2.3.0+cu121 - Accelerate: 0.30.1 - Datasets: 2.19.1 - Tokenizers: 0.19.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ```