File size: 9,425 Bytes
e411b3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe8121c
 
 
e411b3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e000cf
e411b3c
 
 
 
 
 
8e000cf
2fe792d
43476d8
2abfce7
7cea751
a93fde4
2783043
819ef5c
0967714
3df7b44
855a894
ebd75fc
d3dd02e
e9aa8fe
0724760
6419636
e8b534f
f421140
b764cf3
4e3ca64
5eef79e
3ebf765
2f3da22
ca1bbd2
05bdf71
274ccba
4b86174
1d4ed1d
29e9a8f
38ed845
d970485
3b9f70d
92c95fe
afa299a
3d5295f
ffdde10
e5e1766
952b754
e6dc43e
1ed8b2d
2d708fe
feec7f8
d074609
1ad901b
f728e03
900a0e7
86ed606
f75e298
c1c4751
0be8faf
dd1926f
b4b782c
16ac756
c8ab12c
31e6ca2
e7fd6a2
2a34e46
1a7d695
1451f4a
c119b26
ecbf758
88918a8
3766b0f
3cc80d6
6beb846
ddf892c
2f43684
75f0e7a
280e293
fa995c1
350aef8
9c36842
dcf1fb7
892b19d
7febf76
4e20620
d2e5a65
746af4a
5c045c5
1764deb
3229d1d
b9109e1
b28656d
9a7374b
d25fdcb
72889ff
eaa0233
cce7b13
f19cf29
7d6996d
02f9bc5
18723d8
f94c309
6cc0c2c
029f4de
ca3774e
162f081
8f241ab
4fdc4e8
3d55dda
1d9a717
2a4d22c
e67c555
1ca6623
9967ac6
a98b215
967a39d
d0f90d9
71c4f50
e9aed8a
3ca3864
c36c988
a40395a
4b2c7fe
7162cfc
db2cdcd
66c40e5
6c7100b
f6bb523
bfcbd68
eb2bc29
f2ff696
51bf13a
49fc198
d04b909
1ad2049
91f4329
904be66
c2c1baa
8adff0c
18f4895
3f33d8b
5723d06
73b34cb
fef3ddc
124d8c4
c861d59
1d9e051
f718497
72ff5ac
966fb53
35809db
7ff8f85
e65839b
dcc07e5
ebbe237
854650c
d71a9ab
75ea078
e883805
59936d1
beb71e9
579a184
daa233c
5427254
3ee323c
e7b3952
6e903ef
49b36b4
42a1ef1
b18f1bc
b8909ff
f1e9944
b6768cd
9841419
24f7fd7
3727dff
30f5fdd
7777d56
7f2ed56
d35aa18
162dba6
ef1409b
253a853
caa9ab3
7ac1fe0
076f707
7eed014
a4fcc4b
27114ec
4a31c1c
e82fcde
d1c83c0
39645aa
b7cb4bc
955f5ca
b93bca5
f77dc17
23aa9a0
7ee0494
1968f3e
177c8e7
f1b101b
bd1932b
2b5aa0e
7ba02dd
0da28b7
fe8121c
e411b3c
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
---
license: apache-2.0
base_model: facebook/bart-base
tags:
- generated_from_keras_callback
model-index:
- name: pijarcandra22/NMTBaliIndoBART
  results: []
---

<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->

# pijarcandra22/NMTBaliIndoBART

This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 5.4653
- Validation Loss: 6.0299
- Epoch: 197

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 0.02, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32

### Training results

| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 9.3368     | 5.6757          | 0     |
| 5.5627     | 5.5987          | 1     |
| 5.5311     | 5.5419          | 2     |
| 5.5152     | 5.5201          | 3     |
| 5.5005     | 5.6477          | 4     |
| 5.4704     | 5.5914          | 5     |
| 5.4610     | 6.0922          | 6     |
| 5.4584     | 5.7137          | 7     |
| 5.4528     | 5.8658          | 8     |
| 5.4820     | 5.5628          | 9     |
| 5.4874     | 5.5309          | 10    |
| 5.4917     | 5.7595          | 11    |
| 5.4898     | 5.7333          | 12    |
| 5.4833     | 5.6789          | 13    |
| 5.4767     | 5.9588          | 14    |
| 5.4883     | 5.9895          | 15    |
| 5.4694     | 6.0100          | 16    |
| 5.4663     | 6.0316          | 17    |
| 5.4602     | 5.9233          | 18    |
| 5.4576     | 6.0051          | 19    |
| 5.4559     | 5.9966          | 20    |
| 5.4651     | 6.0025          | 21    |
| 5.4660     | 6.0160          | 22    |
| 5.4626     | 5.8324          | 23    |
| 5.4647     | 5.8383          | 24    |
| 5.4695     | 6.0272          | 25    |
| 5.4614     | 6.0724          | 26    |
| 5.4623     | 5.9454          | 27    |
| 5.4678     | 6.0196          | 28    |
| 5.4860     | 5.5949          | 29    |
| 5.4851     | 5.8838          | 30    |
| 5.4666     | 5.8506          | 31    |
| 5.4715     | 6.0391          | 32    |
| 5.4630     | 6.0870          | 33    |
| 5.4646     | 6.2195          | 34    |
| 5.4574     | 5.9696          | 35    |
| 5.4564     | 5.8970          | 36    |
| 5.4570     | 5.9522          | 37    |
| 5.4559     | 6.1518          | 38    |
| 5.4584     | 6.1860          | 39    |
| 5.4732     | 6.1168          | 40    |
| 5.4625     | 6.1588          | 41    |
| 5.4601     | 5.9868          | 42    |
| 5.4645     | 5.9606          | 43    |
| 5.4664     | 6.1495          | 44    |
| 5.4698     | 6.0152          | 45    |
| 5.4666     | 6.2713          | 46    |
| 5.4557     | 6.2708          | 47    |
| 5.4557     | 6.0003          | 48    |
| 5.4693     | 5.9321          | 49    |
| 5.4928     | 5.8971          | 50    |
| 5.5032     | 6.0766          | 51    |
| 5.4749     | 5.8919          | 52    |
| 5.4689     | 5.9853          | 53    |
| 5.4665     | 5.9329          | 54    |
| 5.4574     | 5.9770          | 55    |
| 5.4686     | 6.1022          | 56    |
| 5.4727     | 5.8973          | 57    |
| 5.4692     | 5.9633          | 58    |
| 5.4608     | 6.0480          | 59    |
| 5.4613     | 5.9596          | 60    |
| 5.4607     | 6.1158          | 61    |
| 5.4531     | 6.0617          | 62    |
| 5.4610     | 6.0375          | 63    |
| 5.4631     | 6.1184          | 64    |
| 5.4627     | 6.0465          | 65    |
| 5.4685     | 6.0011          | 66    |
| 5.4642     | 6.0828          | 67    |
| 5.4577     | 6.0883          | 68    |
| 5.4615     | 5.9523          | 69    |
| 5.4673     | 5.7216          | 70    |
| 5.4724     | 6.0274          | 71    |
| 5.4601     | 6.0344          | 72    |
| 5.4640     | 5.9661          | 73    |
| 5.4590     | 6.0013          | 74    |
| 5.4622     | 6.0172          | 75    |
| 5.4666     | 5.8407          | 76    |
| 5.4669     | 6.0261          | 77    |
| 5.4859     | 5.9295          | 78    |
| 5.5042     | 6.1254          | 79    |
| 5.4845     | 5.8930          | 80    |
| 5.5001     | 5.8867          | 81    |
| 5.4923     | 5.9480          | 82    |
| 5.4909     | 6.0475          | 83    |
| 5.4780     | 5.9289          | 84    |
| 5.4867     | 5.8134          | 85    |
| 5.4877     | 6.0032          | 86    |
| 5.4806     | 6.0884          | 87    |
| 5.4784     | 6.0567          | 88    |
| 5.4830     | 5.9790          | 89    |
| 5.4894     | 5.8919          | 90    |
| 5.4890     | 5.9626          | 91    |
| 5.4774     | 6.0267          | 92    |
| 5.5033     | 6.1150          | 93    |
| 5.4765     | 5.9776          | 94    |
| 5.4657     | 6.1395          | 95    |
| 5.4720     | 5.9938          | 96    |
| 5.4748     | 5.9656          | 97    |
| 5.4701     | 6.0163          | 98    |
| 5.4718     | 6.1462          | 99    |
| 5.4672     | 6.0804          | 100   |
| 5.4775     | 6.1055          | 101   |
| 5.4775     | 6.0936          | 102   |
| 5.4673     | 5.9839          | 103   |
| 5.4691     | 5.8972          | 104   |
| 5.4694     | 5.8271          | 105   |
| 5.5106     | 5.5305          | 106   |
| 5.5135     | 5.8806          | 107   |
| 5.4786     | 6.1380          | 108   |
| 5.4770     | 5.9899          | 109   |
| 5.4709     | 6.1072          | 110   |
| 5.4701     | 5.9356          | 111   |
| 5.4636     | 5.8304          | 112   |
| 5.4670     | 6.0451          | 113   |
| 5.4598     | 6.0311          | 114   |
| 5.4731     | 5.9862          | 115   |
| 5.4798     | 5.9589          | 116   |
| 5.4674     | 5.9356          | 117   |
| 5.4634     | 6.0088          | 118   |
| 5.4709     | 5.9534          | 119   |
| 5.4891     | 5.9995          | 120   |
| 5.4737     | 5.8611          | 121   |
| 5.4725     | 6.0112          | 122   |
| 5.4835     | 5.6280          | 123   |
| 5.5217     | 5.6917          | 124   |
| 5.4821     | 5.9458          | 125   |
| 5.4898     | 5.7593          | 126   |
| 5.4866     | 5.9110          | 127   |
| 5.4744     | 5.9463          | 128   |
| 5.4673     | 6.0359          | 129   |
| 5.4838     | 6.0166          | 130   |
| 5.4864     | 6.0046          | 131   |
| 5.4896     | 5.9479          | 132   |
| 5.4722     | 6.0699          | 133   |
| 5.4627     | 6.0684          | 134   |
| 5.4690     | 6.0577          | 135   |
| 5.4666     | 6.1473          | 136   |
| 5.4655     | 6.0441          | 137   |
| 5.4665     | 5.9313          | 138   |
| 5.4588     | 6.1375          | 139   |
| 5.4575     | 6.1655          | 140   |
| 5.4609     | 5.9701          | 141   |
| 5.4666     | 6.0677          | 142   |
| 5.4672     | 6.1272          | 143   |
| 5.4776     | 6.2186          | 144   |
| 5.4769     | 5.9815          | 145   |
| 5.4666     | 6.0674          | 146   |
| 5.4670     | 6.0282          | 147   |
| 5.4868     | 5.7416          | 148   |
| 5.4901     | 6.0836          | 149   |
| 5.4877     | 5.9086          | 150   |
| 5.4842     | 5.8724          | 151   |
| 5.5167     | 5.7298          | 152   |
| 5.5043     | 5.7802          | 153   |
| 5.4737     | 6.0805          | 154   |
| 5.4805     | 6.0888          | 155   |
| 5.4765     | 5.9967          | 156   |
| 5.4691     | 5.9332          | 157   |
| 5.4697     | 6.0675          | 158   |
| 5.4648     | 6.0689          | 159   |
| 5.4658     | 5.9954          | 160   |
| 5.4721     | 5.8917          | 161   |
| 5.4641     | 5.8973          | 162   |
| 5.4703     | 6.0126          | 163   |
| 5.4753     | 5.9064          | 164   |
| 5.4731     | 6.0835          | 165   |
| 5.5094     | 5.5720          | 166   |
| 5.5355     | 5.9077          | 167   |
| 5.4791     | 6.0669          | 168   |
| 5.4690     | 6.0729          | 169   |
| 5.4635     | 5.9580          | 170   |
| 5.4698     | 6.1453          | 171   |
| 5.4668     | 5.9952          | 172   |
| 5.4728     | 6.0041          | 173   |
| 5.5062     | 6.1592          | 174   |
| 5.4944     | 5.9536          | 175   |
| 5.4802     | 5.9673          | 176   |
| 5.4710     | 5.9888          | 177   |
| 5.4653     | 6.0656          | 178   |
| 5.4618     | 6.0278          | 179   |
| 5.4659     | 5.9563          | 180   |
| 5.4596     | 6.0022          | 181   |
| 5.4627     | 5.9594          | 182   |
| 5.4688     | 5.8462          | 183   |
| 5.4662     | 5.9550          | 184   |
| 5.4646     | 5.9757          | 185   |
| 5.4753     | 5.9400          | 186   |
| 5.4911     | 5.7438          | 187   |
| 5.4681     | 6.0941          | 188   |
| 5.4719     | 6.0324          | 189   |
| 5.4692     | 6.0313          | 190   |
| 5.4634     | 5.9874          | 191   |
| 5.4639     | 5.9928          | 192   |
| 5.4714     | 6.0265          | 193   |
| 5.4569     | 5.8387          | 194   |
| 5.4606     | 6.0462          | 195   |
| 5.4667     | 5.9636          | 196   |
| 5.4653     | 6.0299          | 197   |


### Framework versions

- Transformers 4.40.2
- TensorFlow 2.15.0
- Datasets 2.19.1
- Tokenizers 0.19.1