--- license: apache-2.0 tags: - generated_from_trainer datasets: - eoir_privacy metrics: - accuracy - f1 base_model: distilbert-base-uncased model-index: - name: distilbert-base-uncased-finetuned-eoir_privacy results: - task: type: text-classification name: Text Classification dataset: name: eoir_privacy type: eoir_privacy args: all metrics: - type: accuracy value: 0.9052835051546392 name: Accuracy - type: f1 value: 0.8088426527958388 name: F1 --- # distilbert-base-uncased-finetuned-eoir_privacy This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the eoir_privacy dataset. It achieves the following results on the evaluation set: - Loss: 0.3681 - Accuracy: 0.9053 - F1: 0.8088 ## Model description Model predicts whether to mask names as pseudonyms in any text. Input format should be a paragraph with names masked. It will then output whether to use a pseudonym because the EOIR courts would not allow such private/sensitive information to become public unmasked. ## Intended uses & limitations This is a minimal privacy standard and will likely not work on out-of-distribution data. ## Training and evaluation data We train on the EOIR Privacy dataset and evaluate further using sensitivity analyses. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 395 | 0.3053 | 0.8789 | 0.7432 | | 0.3562 | 2.0 | 790 | 0.2857 | 0.8976 | 0.7883 | | 0.2217 | 3.0 | 1185 | 0.3358 | 0.8905 | 0.7550 | | 0.1509 | 4.0 | 1580 | 0.3505 | 0.9040 | 0.8077 | | 0.1509 | 5.0 | 1975 | 0.3681 | 0.9053 | 0.8088 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1 ### Citation ``` @misc{hendersonkrass2022pileoflaw, url = {https://arxiv.org/abs/2207.00220}, author = {Henderson*, Peter and Krass*, Mark S. and Zheng, Lucia and Guha, Neel and Manning, Christopher D. and Jurafsky, Dan and Ho, Daniel E.}, title = {Pile of Law: Learning Responsible Data Filtering from the Law and a 256GB Open-Source Legal Dataset}, publisher = {arXiv}, year = {2022} } ```