Initial commit
Browse files- 1_Pooling/config.json +10 -0
- README.md +2787 -0
- config.json +44 -0
- config_sentence_transformers.json +10 -0
- model.safetensors +3 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +62 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 1024,
|
3 |
+
"pooling_mode_cls_token": true,
|
4 |
+
"pooling_mode_mean_tokens": false,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,2787 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
datasets:
|
3 |
+
- allenai/c4
|
4 |
+
library_name: transformers
|
5 |
+
tags:
|
6 |
+
- sentence-transformers
|
7 |
+
- gte
|
8 |
+
- mteb
|
9 |
+
- transformers.js
|
10 |
+
- sentence-similarity
|
11 |
+
license: apache-2.0
|
12 |
+
language:
|
13 |
+
- en
|
14 |
+
model-index:
|
15 |
+
- name: gte-large-en-v1.5
|
16 |
+
results:
|
17 |
+
- task:
|
18 |
+
type: Classification
|
19 |
+
dataset:
|
20 |
+
type: mteb/amazon_counterfactual
|
21 |
+
name: MTEB AmazonCounterfactualClassification (en)
|
22 |
+
config: en
|
23 |
+
split: test
|
24 |
+
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
|
25 |
+
metrics:
|
26 |
+
- type: accuracy
|
27 |
+
value: 73.01492537313432
|
28 |
+
- type: ap
|
29 |
+
value: 35.05341696659522
|
30 |
+
- type: f1
|
31 |
+
value: 66.71270310883853
|
32 |
+
- task:
|
33 |
+
type: Classification
|
34 |
+
dataset:
|
35 |
+
type: mteb/amazon_polarity
|
36 |
+
name: MTEB AmazonPolarityClassification
|
37 |
+
config: default
|
38 |
+
split: test
|
39 |
+
revision: e2d317d38cd51312af73b3d32a06d1a08b442046
|
40 |
+
metrics:
|
41 |
+
- type: accuracy
|
42 |
+
value: 93.97189999999999
|
43 |
+
- type: ap
|
44 |
+
value: 90.5952493948908
|
45 |
+
- type: f1
|
46 |
+
value: 93.95848137716877
|
47 |
+
- task:
|
48 |
+
type: Classification
|
49 |
+
dataset:
|
50 |
+
type: mteb/amazon_reviews_multi
|
51 |
+
name: MTEB AmazonReviewsClassification (en)
|
52 |
+
config: en
|
53 |
+
split: test
|
54 |
+
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
|
55 |
+
metrics:
|
56 |
+
- type: accuracy
|
57 |
+
value: 54.196
|
58 |
+
- type: f1
|
59 |
+
value: 53.80122334012787
|
60 |
+
- task:
|
61 |
+
type: Retrieval
|
62 |
+
dataset:
|
63 |
+
type: mteb/arguana
|
64 |
+
name: MTEB ArguAna
|
65 |
+
config: default
|
66 |
+
split: test
|
67 |
+
revision: c22ab2a51041ffd869aaddef7af8d8215647e41a
|
68 |
+
metrics:
|
69 |
+
- type: map_at_1
|
70 |
+
value: 47.297
|
71 |
+
- type: map_at_10
|
72 |
+
value: 64.303
|
73 |
+
- type: map_at_100
|
74 |
+
value: 64.541
|
75 |
+
- type: map_at_1000
|
76 |
+
value: 64.541
|
77 |
+
- type: map_at_3
|
78 |
+
value: 60.728
|
79 |
+
- type: map_at_5
|
80 |
+
value: 63.114000000000004
|
81 |
+
- type: mrr_at_1
|
82 |
+
value: 48.435
|
83 |
+
- type: mrr_at_10
|
84 |
+
value: 64.657
|
85 |
+
- type: mrr_at_100
|
86 |
+
value: 64.901
|
87 |
+
- type: mrr_at_1000
|
88 |
+
value: 64.901
|
89 |
+
- type: mrr_at_3
|
90 |
+
value: 61.06
|
91 |
+
- type: mrr_at_5
|
92 |
+
value: 63.514
|
93 |
+
- type: ndcg_at_1
|
94 |
+
value: 47.297
|
95 |
+
- type: ndcg_at_10
|
96 |
+
value: 72.107
|
97 |
+
- type: ndcg_at_100
|
98 |
+
value: 72.963
|
99 |
+
- type: ndcg_at_1000
|
100 |
+
value: 72.963
|
101 |
+
- type: ndcg_at_3
|
102 |
+
value: 65.063
|
103 |
+
- type: ndcg_at_5
|
104 |
+
value: 69.352
|
105 |
+
- type: precision_at_1
|
106 |
+
value: 47.297
|
107 |
+
- type: precision_at_10
|
108 |
+
value: 9.623
|
109 |
+
- type: precision_at_100
|
110 |
+
value: 0.996
|
111 |
+
- type: precision_at_1000
|
112 |
+
value: 0.1
|
113 |
+
- type: precision_at_3
|
114 |
+
value: 25.865
|
115 |
+
- type: precision_at_5
|
116 |
+
value: 17.596
|
117 |
+
- type: recall_at_1
|
118 |
+
value: 47.297
|
119 |
+
- type: recall_at_10
|
120 |
+
value: 96.23
|
121 |
+
- type: recall_at_100
|
122 |
+
value: 99.644
|
123 |
+
- type: recall_at_1000
|
124 |
+
value: 99.644
|
125 |
+
- type: recall_at_3
|
126 |
+
value: 77.596
|
127 |
+
- type: recall_at_5
|
128 |
+
value: 87.98
|
129 |
+
- task:
|
130 |
+
type: Clustering
|
131 |
+
dataset:
|
132 |
+
type: mteb/arxiv-clustering-p2p
|
133 |
+
name: MTEB ArxivClusteringP2P
|
134 |
+
config: default
|
135 |
+
split: test
|
136 |
+
revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
|
137 |
+
metrics:
|
138 |
+
- type: v_measure
|
139 |
+
value: 48.467787861077475
|
140 |
+
- task:
|
141 |
+
type: Clustering
|
142 |
+
dataset:
|
143 |
+
type: mteb/arxiv-clustering-s2s
|
144 |
+
name: MTEB ArxivClusteringS2S
|
145 |
+
config: default
|
146 |
+
split: test
|
147 |
+
revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
|
148 |
+
metrics:
|
149 |
+
- type: v_measure
|
150 |
+
value: 43.39198391914257
|
151 |
+
- task:
|
152 |
+
type: Reranking
|
153 |
+
dataset:
|
154 |
+
type: mteb/askubuntudupquestions-reranking
|
155 |
+
name: MTEB AskUbuntuDupQuestions
|
156 |
+
config: default
|
157 |
+
split: test
|
158 |
+
revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
|
159 |
+
metrics:
|
160 |
+
- type: map
|
161 |
+
value: 63.12794820591384
|
162 |
+
- type: mrr
|
163 |
+
value: 75.9331442641692
|
164 |
+
- task:
|
165 |
+
type: STS
|
166 |
+
dataset:
|
167 |
+
type: mteb/biosses-sts
|
168 |
+
name: MTEB BIOSSES
|
169 |
+
config: default
|
170 |
+
split: test
|
171 |
+
revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
|
172 |
+
metrics:
|
173 |
+
- type: cos_sim_pearson
|
174 |
+
value: 87.85062993863319
|
175 |
+
- type: cos_sim_spearman
|
176 |
+
value: 85.39049989733459
|
177 |
+
- type: euclidean_pearson
|
178 |
+
value: 86.00222680278333
|
179 |
+
- type: euclidean_spearman
|
180 |
+
value: 85.45556162077396
|
181 |
+
- type: manhattan_pearson
|
182 |
+
value: 85.88769871785621
|
183 |
+
- type: manhattan_spearman
|
184 |
+
value: 85.11760211290839
|
185 |
+
- task:
|
186 |
+
type: Classification
|
187 |
+
dataset:
|
188 |
+
type: mteb/banking77
|
189 |
+
name: MTEB Banking77Classification
|
190 |
+
config: default
|
191 |
+
split: test
|
192 |
+
revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
|
193 |
+
metrics:
|
194 |
+
- type: accuracy
|
195 |
+
value: 87.32792207792208
|
196 |
+
- type: f1
|
197 |
+
value: 87.29132945999555
|
198 |
+
- task:
|
199 |
+
type: Clustering
|
200 |
+
dataset:
|
201 |
+
type: mteb/biorxiv-clustering-p2p
|
202 |
+
name: MTEB BiorxivClusteringP2P
|
203 |
+
config: default
|
204 |
+
split: test
|
205 |
+
revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
|
206 |
+
metrics:
|
207 |
+
- type: v_measure
|
208 |
+
value: 40.5779328301945
|
209 |
+
- task:
|
210 |
+
type: Clustering
|
211 |
+
dataset:
|
212 |
+
type: mteb/biorxiv-clustering-s2s
|
213 |
+
name: MTEB BiorxivClusteringS2S
|
214 |
+
config: default
|
215 |
+
split: test
|
216 |
+
revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
|
217 |
+
metrics:
|
218 |
+
- type: v_measure
|
219 |
+
value: 37.94425623865118
|
220 |
+
- task:
|
221 |
+
type: Retrieval
|
222 |
+
dataset:
|
223 |
+
type: mteb/cqadupstack-android
|
224 |
+
name: MTEB CQADupstackAndroidRetrieval
|
225 |
+
config: default
|
226 |
+
split: test
|
227 |
+
revision: f46a197baaae43b4f621051089b82a364682dfeb
|
228 |
+
metrics:
|
229 |
+
- type: map_at_1
|
230 |
+
value: 32.978
|
231 |
+
- type: map_at_10
|
232 |
+
value: 44.45
|
233 |
+
- type: map_at_100
|
234 |
+
value: 46.19
|
235 |
+
- type: map_at_1000
|
236 |
+
value: 46.303
|
237 |
+
- type: map_at_3
|
238 |
+
value: 40.849000000000004
|
239 |
+
- type: map_at_5
|
240 |
+
value: 42.55
|
241 |
+
- type: mrr_at_1
|
242 |
+
value: 40.629
|
243 |
+
- type: mrr_at_10
|
244 |
+
value: 50.848000000000006
|
245 |
+
- type: mrr_at_100
|
246 |
+
value: 51.669
|
247 |
+
- type: mrr_at_1000
|
248 |
+
value: 51.705
|
249 |
+
- type: mrr_at_3
|
250 |
+
value: 47.997
|
251 |
+
- type: mrr_at_5
|
252 |
+
value: 49.506
|
253 |
+
- type: ndcg_at_1
|
254 |
+
value: 40.629
|
255 |
+
- type: ndcg_at_10
|
256 |
+
value: 51.102000000000004
|
257 |
+
- type: ndcg_at_100
|
258 |
+
value: 57.159000000000006
|
259 |
+
- type: ndcg_at_1000
|
260 |
+
value: 58.669000000000004
|
261 |
+
- type: ndcg_at_3
|
262 |
+
value: 45.738
|
263 |
+
- type: ndcg_at_5
|
264 |
+
value: 47.632999999999996
|
265 |
+
- type: precision_at_1
|
266 |
+
value: 40.629
|
267 |
+
- type: precision_at_10
|
268 |
+
value: 9.700000000000001
|
269 |
+
- type: precision_at_100
|
270 |
+
value: 1.5970000000000002
|
271 |
+
- type: precision_at_1000
|
272 |
+
value: 0.202
|
273 |
+
- type: precision_at_3
|
274 |
+
value: 21.698
|
275 |
+
- type: precision_at_5
|
276 |
+
value: 15.393
|
277 |
+
- type: recall_at_1
|
278 |
+
value: 32.978
|
279 |
+
- type: recall_at_10
|
280 |
+
value: 63.711
|
281 |
+
- type: recall_at_100
|
282 |
+
value: 88.39399999999999
|
283 |
+
- type: recall_at_1000
|
284 |
+
value: 97.513
|
285 |
+
- type: recall_at_3
|
286 |
+
value: 48.025
|
287 |
+
- type: recall_at_5
|
288 |
+
value: 53.52
|
289 |
+
- task:
|
290 |
+
type: Retrieval
|
291 |
+
dataset:
|
292 |
+
type: mteb/cqadupstack-english
|
293 |
+
name: MTEB CQADupstackEnglishRetrieval
|
294 |
+
config: default
|
295 |
+
split: test
|
296 |
+
revision: ad9991cb51e31e31e430383c75ffb2885547b5f0
|
297 |
+
metrics:
|
298 |
+
- type: map_at_1
|
299 |
+
value: 30.767
|
300 |
+
- type: map_at_10
|
301 |
+
value: 42.195
|
302 |
+
- type: map_at_100
|
303 |
+
value: 43.541999999999994
|
304 |
+
- type: map_at_1000
|
305 |
+
value: 43.673
|
306 |
+
- type: map_at_3
|
307 |
+
value: 38.561
|
308 |
+
- type: map_at_5
|
309 |
+
value: 40.532000000000004
|
310 |
+
- type: mrr_at_1
|
311 |
+
value: 38.79
|
312 |
+
- type: mrr_at_10
|
313 |
+
value: 48.021
|
314 |
+
- type: mrr_at_100
|
315 |
+
value: 48.735
|
316 |
+
- type: mrr_at_1000
|
317 |
+
value: 48.776
|
318 |
+
- type: mrr_at_3
|
319 |
+
value: 45.594
|
320 |
+
- type: mrr_at_5
|
321 |
+
value: 46.986
|
322 |
+
- type: ndcg_at_1
|
323 |
+
value: 38.79
|
324 |
+
- type: ndcg_at_10
|
325 |
+
value: 48.468
|
326 |
+
- type: ndcg_at_100
|
327 |
+
value: 53.037
|
328 |
+
- type: ndcg_at_1000
|
329 |
+
value: 55.001999999999995
|
330 |
+
- type: ndcg_at_3
|
331 |
+
value: 43.409
|
332 |
+
- type: ndcg_at_5
|
333 |
+
value: 45.654
|
334 |
+
- type: precision_at_1
|
335 |
+
value: 38.79
|
336 |
+
- type: precision_at_10
|
337 |
+
value: 9.452
|
338 |
+
- type: precision_at_100
|
339 |
+
value: 1.518
|
340 |
+
- type: precision_at_1000
|
341 |
+
value: 0.201
|
342 |
+
- type: precision_at_3
|
343 |
+
value: 21.21
|
344 |
+
- type: precision_at_5
|
345 |
+
value: 15.171999999999999
|
346 |
+
- type: recall_at_1
|
347 |
+
value: 30.767
|
348 |
+
- type: recall_at_10
|
349 |
+
value: 60.118
|
350 |
+
- type: recall_at_100
|
351 |
+
value: 79.271
|
352 |
+
- type: recall_at_1000
|
353 |
+
value: 91.43299999999999
|
354 |
+
- type: recall_at_3
|
355 |
+
value: 45.36
|
356 |
+
- type: recall_at_5
|
357 |
+
value: 51.705
|
358 |
+
- task:
|
359 |
+
type: Retrieval
|
360 |
+
dataset:
|
361 |
+
type: mteb/cqadupstack-gaming
|
362 |
+
name: MTEB CQADupstackGamingRetrieval
|
363 |
+
config: default
|
364 |
+
split: test
|
365 |
+
revision: 4885aa143210c98657558c04aaf3dc47cfb54340
|
366 |
+
metrics:
|
367 |
+
- type: map_at_1
|
368 |
+
value: 40.007
|
369 |
+
- type: map_at_10
|
370 |
+
value: 53.529
|
371 |
+
- type: map_at_100
|
372 |
+
value: 54.602
|
373 |
+
- type: map_at_1000
|
374 |
+
value: 54.647
|
375 |
+
- type: map_at_3
|
376 |
+
value: 49.951
|
377 |
+
- type: map_at_5
|
378 |
+
value: 52.066
|
379 |
+
- type: mrr_at_1
|
380 |
+
value: 45.705
|
381 |
+
- type: mrr_at_10
|
382 |
+
value: 56.745000000000005
|
383 |
+
- type: mrr_at_100
|
384 |
+
value: 57.43899999999999
|
385 |
+
- type: mrr_at_1000
|
386 |
+
value: 57.462999999999994
|
387 |
+
- type: mrr_at_3
|
388 |
+
value: 54.25299999999999
|
389 |
+
- type: mrr_at_5
|
390 |
+
value: 55.842000000000006
|
391 |
+
- type: ndcg_at_1
|
392 |
+
value: 45.705
|
393 |
+
- type: ndcg_at_10
|
394 |
+
value: 59.809
|
395 |
+
- type: ndcg_at_100
|
396 |
+
value: 63.837999999999994
|
397 |
+
- type: ndcg_at_1000
|
398 |
+
value: 64.729
|
399 |
+
- type: ndcg_at_3
|
400 |
+
value: 53.994
|
401 |
+
- type: ndcg_at_5
|
402 |
+
value: 57.028
|
403 |
+
- type: precision_at_1
|
404 |
+
value: 45.705
|
405 |
+
- type: precision_at_10
|
406 |
+
value: 9.762
|
407 |
+
- type: precision_at_100
|
408 |
+
value: 1.275
|
409 |
+
- type: precision_at_1000
|
410 |
+
value: 0.13899999999999998
|
411 |
+
- type: precision_at_3
|
412 |
+
value: 24.368000000000002
|
413 |
+
- type: precision_at_5
|
414 |
+
value: 16.84
|
415 |
+
- type: recall_at_1
|
416 |
+
value: 40.007
|
417 |
+
- type: recall_at_10
|
418 |
+
value: 75.017
|
419 |
+
- type: recall_at_100
|
420 |
+
value: 91.99000000000001
|
421 |
+
- type: recall_at_1000
|
422 |
+
value: 98.265
|
423 |
+
- type: recall_at_3
|
424 |
+
value: 59.704
|
425 |
+
- type: recall_at_5
|
426 |
+
value: 67.109
|
427 |
+
- task:
|
428 |
+
type: Retrieval
|
429 |
+
dataset:
|
430 |
+
type: mteb/cqadupstack-gis
|
431 |
+
name: MTEB CQADupstackGisRetrieval
|
432 |
+
config: default
|
433 |
+
split: test
|
434 |
+
revision: 5003b3064772da1887988e05400cf3806fe491f2
|
435 |
+
metrics:
|
436 |
+
- type: map_at_1
|
437 |
+
value: 26.639000000000003
|
438 |
+
- type: map_at_10
|
439 |
+
value: 35.926
|
440 |
+
- type: map_at_100
|
441 |
+
value: 37.126999999999995
|
442 |
+
- type: map_at_1000
|
443 |
+
value: 37.202
|
444 |
+
- type: map_at_3
|
445 |
+
value: 32.989000000000004
|
446 |
+
- type: map_at_5
|
447 |
+
value: 34.465
|
448 |
+
- type: mrr_at_1
|
449 |
+
value: 28.475
|
450 |
+
- type: mrr_at_10
|
451 |
+
value: 37.7
|
452 |
+
- type: mrr_at_100
|
453 |
+
value: 38.753
|
454 |
+
- type: mrr_at_1000
|
455 |
+
value: 38.807
|
456 |
+
- type: mrr_at_3
|
457 |
+
value: 35.066
|
458 |
+
- type: mrr_at_5
|
459 |
+
value: 36.512
|
460 |
+
- type: ndcg_at_1
|
461 |
+
value: 28.475
|
462 |
+
- type: ndcg_at_10
|
463 |
+
value: 41.245
|
464 |
+
- type: ndcg_at_100
|
465 |
+
value: 46.814
|
466 |
+
- type: ndcg_at_1000
|
467 |
+
value: 48.571
|
468 |
+
- type: ndcg_at_3
|
469 |
+
value: 35.528999999999996
|
470 |
+
- type: ndcg_at_5
|
471 |
+
value: 38.066
|
472 |
+
- type: precision_at_1
|
473 |
+
value: 28.475
|
474 |
+
- type: precision_at_10
|
475 |
+
value: 6.497
|
476 |
+
- type: precision_at_100
|
477 |
+
value: 0.9650000000000001
|
478 |
+
- type: precision_at_1000
|
479 |
+
value: 0.11499999999999999
|
480 |
+
- type: precision_at_3
|
481 |
+
value: 15.065999999999999
|
482 |
+
- type: precision_at_5
|
483 |
+
value: 10.599
|
484 |
+
- type: recall_at_1
|
485 |
+
value: 26.639000000000003
|
486 |
+
- type: recall_at_10
|
487 |
+
value: 55.759
|
488 |
+
- type: recall_at_100
|
489 |
+
value: 80.913
|
490 |
+
- type: recall_at_1000
|
491 |
+
value: 93.929
|
492 |
+
- type: recall_at_3
|
493 |
+
value: 40.454
|
494 |
+
- type: recall_at_5
|
495 |
+
value: 46.439
|
496 |
+
- task:
|
497 |
+
type: Retrieval
|
498 |
+
dataset:
|
499 |
+
type: mteb/cqadupstack-mathematica
|
500 |
+
name: MTEB CQADupstackMathematicaRetrieval
|
501 |
+
config: default
|
502 |
+
split: test
|
503 |
+
revision: 90fceea13679c63fe563ded68f3b6f06e50061de
|
504 |
+
metrics:
|
505 |
+
- type: map_at_1
|
506 |
+
value: 15.767999999999999
|
507 |
+
- type: map_at_10
|
508 |
+
value: 24.811
|
509 |
+
- type: map_at_100
|
510 |
+
value: 26.064999999999998
|
511 |
+
- type: map_at_1000
|
512 |
+
value: 26.186999999999998
|
513 |
+
- type: map_at_3
|
514 |
+
value: 21.736
|
515 |
+
- type: map_at_5
|
516 |
+
value: 23.283
|
517 |
+
- type: mrr_at_1
|
518 |
+
value: 19.527
|
519 |
+
- type: mrr_at_10
|
520 |
+
value: 29.179
|
521 |
+
- type: mrr_at_100
|
522 |
+
value: 30.153999999999996
|
523 |
+
- type: mrr_at_1000
|
524 |
+
value: 30.215999999999998
|
525 |
+
- type: mrr_at_3
|
526 |
+
value: 26.223000000000003
|
527 |
+
- type: mrr_at_5
|
528 |
+
value: 27.733999999999998
|
529 |
+
- type: ndcg_at_1
|
530 |
+
value: 19.527
|
531 |
+
- type: ndcg_at_10
|
532 |
+
value: 30.786
|
533 |
+
- type: ndcg_at_100
|
534 |
+
value: 36.644
|
535 |
+
- type: ndcg_at_1000
|
536 |
+
value: 39.440999999999995
|
537 |
+
- type: ndcg_at_3
|
538 |
+
value: 24.958
|
539 |
+
- type: ndcg_at_5
|
540 |
+
value: 27.392
|
541 |
+
- type: precision_at_1
|
542 |
+
value: 19.527
|
543 |
+
- type: precision_at_10
|
544 |
+
value: 5.995
|
545 |
+
- type: precision_at_100
|
546 |
+
value: 1.03
|
547 |
+
- type: precision_at_1000
|
548 |
+
value: 0.14100000000000001
|
549 |
+
- type: precision_at_3
|
550 |
+
value: 12.520999999999999
|
551 |
+
- type: precision_at_5
|
552 |
+
value: 9.129
|
553 |
+
- type: recall_at_1
|
554 |
+
value: 15.767999999999999
|
555 |
+
- type: recall_at_10
|
556 |
+
value: 44.824000000000005
|
557 |
+
- type: recall_at_100
|
558 |
+
value: 70.186
|
559 |
+
- type: recall_at_1000
|
560 |
+
value: 89.934
|
561 |
+
- type: recall_at_3
|
562 |
+
value: 28.607
|
563 |
+
- type: recall_at_5
|
564 |
+
value: 34.836
|
565 |
+
- task:
|
566 |
+
type: Retrieval
|
567 |
+
dataset:
|
568 |
+
type: mteb/cqadupstack-physics
|
569 |
+
name: MTEB CQADupstackPhysicsRetrieval
|
570 |
+
config: default
|
571 |
+
split: test
|
572 |
+
revision: 79531abbd1fb92d06c6d6315a0cbbbf5bb247ea4
|
573 |
+
metrics:
|
574 |
+
- type: map_at_1
|
575 |
+
value: 31.952
|
576 |
+
- type: map_at_10
|
577 |
+
value: 44.438
|
578 |
+
- type: map_at_100
|
579 |
+
value: 45.778
|
580 |
+
- type: map_at_1000
|
581 |
+
value: 45.883
|
582 |
+
- type: map_at_3
|
583 |
+
value: 41.044000000000004
|
584 |
+
- type: map_at_5
|
585 |
+
value: 42.986000000000004
|
586 |
+
- type: mrr_at_1
|
587 |
+
value: 39.172000000000004
|
588 |
+
- type: mrr_at_10
|
589 |
+
value: 49.76
|
590 |
+
- type: mrr_at_100
|
591 |
+
value: 50.583999999999996
|
592 |
+
- type: mrr_at_1000
|
593 |
+
value: 50.621
|
594 |
+
- type: mrr_at_3
|
595 |
+
value: 47.353
|
596 |
+
- type: mrr_at_5
|
597 |
+
value: 48.739
|
598 |
+
- type: ndcg_at_1
|
599 |
+
value: 39.172000000000004
|
600 |
+
- type: ndcg_at_10
|
601 |
+
value: 50.760000000000005
|
602 |
+
- type: ndcg_at_100
|
603 |
+
value: 56.084
|
604 |
+
- type: ndcg_at_1000
|
605 |
+
value: 57.865
|
606 |
+
- type: ndcg_at_3
|
607 |
+
value: 45.663
|
608 |
+
- type: ndcg_at_5
|
609 |
+
value: 48.178
|
610 |
+
- type: precision_at_1
|
611 |
+
value: 39.172000000000004
|
612 |
+
- type: precision_at_10
|
613 |
+
value: 9.22
|
614 |
+
- type: precision_at_100
|
615 |
+
value: 1.387
|
616 |
+
- type: precision_at_1000
|
617 |
+
value: 0.17099999999999999
|
618 |
+
- type: precision_at_3
|
619 |
+
value: 21.976000000000003
|
620 |
+
- type: precision_at_5
|
621 |
+
value: 15.457
|
622 |
+
- type: recall_at_1
|
623 |
+
value: 31.952
|
624 |
+
- type: recall_at_10
|
625 |
+
value: 63.900999999999996
|
626 |
+
- type: recall_at_100
|
627 |
+
value: 85.676
|
628 |
+
- type: recall_at_1000
|
629 |
+
value: 97.03699999999999
|
630 |
+
- type: recall_at_3
|
631 |
+
value: 49.781
|
632 |
+
- type: recall_at_5
|
633 |
+
value: 56.330000000000005
|
634 |
+
- task:
|
635 |
+
type: Retrieval
|
636 |
+
dataset:
|
637 |
+
type: mteb/cqadupstack-programmers
|
638 |
+
name: MTEB CQADupstackProgrammersRetrieval
|
639 |
+
config: default
|
640 |
+
split: test
|
641 |
+
revision: 6184bc1440d2dbc7612be22b50686b8826d22b32
|
642 |
+
metrics:
|
643 |
+
- type: map_at_1
|
644 |
+
value: 25.332
|
645 |
+
- type: map_at_10
|
646 |
+
value: 36.874
|
647 |
+
- type: map_at_100
|
648 |
+
value: 38.340999999999994
|
649 |
+
- type: map_at_1000
|
650 |
+
value: 38.452
|
651 |
+
- type: map_at_3
|
652 |
+
value: 33.068
|
653 |
+
- type: map_at_5
|
654 |
+
value: 35.324
|
655 |
+
- type: mrr_at_1
|
656 |
+
value: 30.822
|
657 |
+
- type: mrr_at_10
|
658 |
+
value: 41.641
|
659 |
+
- type: mrr_at_100
|
660 |
+
value: 42.519
|
661 |
+
- type: mrr_at_1000
|
662 |
+
value: 42.573
|
663 |
+
- type: mrr_at_3
|
664 |
+
value: 38.413000000000004
|
665 |
+
- type: mrr_at_5
|
666 |
+
value: 40.542
|
667 |
+
- type: ndcg_at_1
|
668 |
+
value: 30.822
|
669 |
+
- type: ndcg_at_10
|
670 |
+
value: 43.414
|
671 |
+
- type: ndcg_at_100
|
672 |
+
value: 49.196
|
673 |
+
- type: ndcg_at_1000
|
674 |
+
value: 51.237
|
675 |
+
- type: ndcg_at_3
|
676 |
+
value: 37.230000000000004
|
677 |
+
- type: ndcg_at_5
|
678 |
+
value: 40.405
|
679 |
+
- type: precision_at_1
|
680 |
+
value: 30.822
|
681 |
+
- type: precision_at_10
|
682 |
+
value: 8.379
|
683 |
+
- type: precision_at_100
|
684 |
+
value: 1.315
|
685 |
+
- type: precision_at_1000
|
686 |
+
value: 0.168
|
687 |
+
- type: precision_at_3
|
688 |
+
value: 18.417
|
689 |
+
- type: precision_at_5
|
690 |
+
value: 13.744
|
691 |
+
- type: recall_at_1
|
692 |
+
value: 25.332
|
693 |
+
- type: recall_at_10
|
694 |
+
value: 57.774
|
695 |
+
- type: recall_at_100
|
696 |
+
value: 82.071
|
697 |
+
- type: recall_at_1000
|
698 |
+
value: 95.60600000000001
|
699 |
+
- type: recall_at_3
|
700 |
+
value: 40.722
|
701 |
+
- type: recall_at_5
|
702 |
+
value: 48.754999999999995
|
703 |
+
- task:
|
704 |
+
type: Retrieval
|
705 |
+
dataset:
|
706 |
+
type: mteb/cqadupstack
|
707 |
+
name: MTEB CQADupstackRetrieval
|
708 |
+
config: default
|
709 |
+
split: test
|
710 |
+
revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4
|
711 |
+
metrics:
|
712 |
+
- type: map_at_1
|
713 |
+
value: 25.91033333333334
|
714 |
+
- type: map_at_10
|
715 |
+
value: 36.23225000000001
|
716 |
+
- type: map_at_100
|
717 |
+
value: 37.55766666666667
|
718 |
+
- type: map_at_1000
|
719 |
+
value: 37.672583333333336
|
720 |
+
- type: map_at_3
|
721 |
+
value: 32.95666666666667
|
722 |
+
- type: map_at_5
|
723 |
+
value: 34.73375
|
724 |
+
- type: mrr_at_1
|
725 |
+
value: 30.634
|
726 |
+
- type: mrr_at_10
|
727 |
+
value: 40.19449999999999
|
728 |
+
- type: mrr_at_100
|
729 |
+
value: 41.099250000000005
|
730 |
+
- type: mrr_at_1000
|
731 |
+
value: 41.15091666666667
|
732 |
+
- type: mrr_at_3
|
733 |
+
value: 37.4615
|
734 |
+
- type: mrr_at_5
|
735 |
+
value: 39.00216666666667
|
736 |
+
- type: ndcg_at_1
|
737 |
+
value: 30.634
|
738 |
+
- type: ndcg_at_10
|
739 |
+
value: 42.162166666666664
|
740 |
+
- type: ndcg_at_100
|
741 |
+
value: 47.60708333333333
|
742 |
+
- type: ndcg_at_1000
|
743 |
+
value: 49.68616666666666
|
744 |
+
- type: ndcg_at_3
|
745 |
+
value: 36.60316666666666
|
746 |
+
- type: ndcg_at_5
|
747 |
+
value: 39.15616666666668
|
748 |
+
- type: precision_at_1
|
749 |
+
value: 30.634
|
750 |
+
- type: precision_at_10
|
751 |
+
value: 7.6193333333333335
|
752 |
+
- type: precision_at_100
|
753 |
+
value: 1.2198333333333333
|
754 |
+
- type: precision_at_1000
|
755 |
+
value: 0.15975000000000003
|
756 |
+
- type: precision_at_3
|
757 |
+
value: 17.087
|
758 |
+
- type: precision_at_5
|
759 |
+
value: 12.298333333333334
|
760 |
+
- type: recall_at_1
|
761 |
+
value: 25.91033333333334
|
762 |
+
- type: recall_at_10
|
763 |
+
value: 55.67300000000001
|
764 |
+
- type: recall_at_100
|
765 |
+
value: 79.20608333333334
|
766 |
+
- type: recall_at_1000
|
767 |
+
value: 93.34866666666667
|
768 |
+
- type: recall_at_3
|
769 |
+
value: 40.34858333333333
|
770 |
+
- type: recall_at_5
|
771 |
+
value: 46.834083333333325
|
772 |
+
- task:
|
773 |
+
type: Retrieval
|
774 |
+
dataset:
|
775 |
+
type: mteb/cqadupstack-stats
|
776 |
+
name: MTEB CQADupstackStatsRetrieval
|
777 |
+
config: default
|
778 |
+
split: test
|
779 |
+
revision: 65ac3a16b8e91f9cee4c9828cc7c335575432a2a
|
780 |
+
metrics:
|
781 |
+
- type: map_at_1
|
782 |
+
value: 25.006
|
783 |
+
- type: map_at_10
|
784 |
+
value: 32.177
|
785 |
+
- type: map_at_100
|
786 |
+
value: 33.324999999999996
|
787 |
+
- type: map_at_1000
|
788 |
+
value: 33.419
|
789 |
+
- type: map_at_3
|
790 |
+
value: 29.952
|
791 |
+
- type: map_at_5
|
792 |
+
value: 31.095
|
793 |
+
- type: mrr_at_1
|
794 |
+
value: 28.066999999999997
|
795 |
+
- type: mrr_at_10
|
796 |
+
value: 34.995
|
797 |
+
- type: mrr_at_100
|
798 |
+
value: 35.978
|
799 |
+
- type: mrr_at_1000
|
800 |
+
value: 36.042
|
801 |
+
- type: mrr_at_3
|
802 |
+
value: 33.103
|
803 |
+
- type: mrr_at_5
|
804 |
+
value: 34.001
|
805 |
+
- type: ndcg_at_1
|
806 |
+
value: 28.066999999999997
|
807 |
+
- type: ndcg_at_10
|
808 |
+
value: 36.481
|
809 |
+
- type: ndcg_at_100
|
810 |
+
value: 42.022999999999996
|
811 |
+
- type: ndcg_at_1000
|
812 |
+
value: 44.377
|
813 |
+
- type: ndcg_at_3
|
814 |
+
value: 32.394
|
815 |
+
- type: ndcg_at_5
|
816 |
+
value: 34.108
|
817 |
+
- type: precision_at_1
|
818 |
+
value: 28.066999999999997
|
819 |
+
- type: precision_at_10
|
820 |
+
value: 5.736
|
821 |
+
- type: precision_at_100
|
822 |
+
value: 0.9259999999999999
|
823 |
+
- type: precision_at_1000
|
824 |
+
value: 0.12
|
825 |
+
- type: precision_at_3
|
826 |
+
value: 13.804
|
827 |
+
- type: precision_at_5
|
828 |
+
value: 9.508999999999999
|
829 |
+
- type: recall_at_1
|
830 |
+
value: 25.006
|
831 |
+
- type: recall_at_10
|
832 |
+
value: 46.972
|
833 |
+
- type: recall_at_100
|
834 |
+
value: 72.138
|
835 |
+
- type: recall_at_1000
|
836 |
+
value: 89.479
|
837 |
+
- type: recall_at_3
|
838 |
+
value: 35.793
|
839 |
+
- type: recall_at_5
|
840 |
+
value: 39.947
|
841 |
+
- task:
|
842 |
+
type: Retrieval
|
843 |
+
dataset:
|
844 |
+
type: mteb/cqadupstack-tex
|
845 |
+
name: MTEB CQADupstackTexRetrieval
|
846 |
+
config: default
|
847 |
+
split: test
|
848 |
+
revision: 46989137a86843e03a6195de44b09deda022eec7
|
849 |
+
metrics:
|
850 |
+
- type: map_at_1
|
851 |
+
value: 16.07
|
852 |
+
- type: map_at_10
|
853 |
+
value: 24.447
|
854 |
+
- type: map_at_100
|
855 |
+
value: 25.685999999999996
|
856 |
+
- type: map_at_1000
|
857 |
+
value: 25.813999999999997
|
858 |
+
- type: map_at_3
|
859 |
+
value: 21.634
|
860 |
+
- type: map_at_5
|
861 |
+
value: 23.133
|
862 |
+
- type: mrr_at_1
|
863 |
+
value: 19.580000000000002
|
864 |
+
- type: mrr_at_10
|
865 |
+
value: 28.127999999999997
|
866 |
+
- type: mrr_at_100
|
867 |
+
value: 29.119
|
868 |
+
- type: mrr_at_1000
|
869 |
+
value: 29.192
|
870 |
+
- type: mrr_at_3
|
871 |
+
value: 25.509999999999998
|
872 |
+
- type: mrr_at_5
|
873 |
+
value: 26.878
|
874 |
+
- type: ndcg_at_1
|
875 |
+
value: 19.580000000000002
|
876 |
+
- type: ndcg_at_10
|
877 |
+
value: 29.804000000000002
|
878 |
+
- type: ndcg_at_100
|
879 |
+
value: 35.555
|
880 |
+
- type: ndcg_at_1000
|
881 |
+
value: 38.421
|
882 |
+
- type: ndcg_at_3
|
883 |
+
value: 24.654999999999998
|
884 |
+
- type: ndcg_at_5
|
885 |
+
value: 26.881
|
886 |
+
- type: precision_at_1
|
887 |
+
value: 19.580000000000002
|
888 |
+
- type: precision_at_10
|
889 |
+
value: 5.736
|
890 |
+
- type: precision_at_100
|
891 |
+
value: 1.005
|
892 |
+
- type: precision_at_1000
|
893 |
+
value: 0.145
|
894 |
+
- type: precision_at_3
|
895 |
+
value: 12.033000000000001
|
896 |
+
- type: precision_at_5
|
897 |
+
value: 8.871
|
898 |
+
- type: recall_at_1
|
899 |
+
value: 16.07
|
900 |
+
- type: recall_at_10
|
901 |
+
value: 42.364000000000004
|
902 |
+
- type: recall_at_100
|
903 |
+
value: 68.01899999999999
|
904 |
+
- type: recall_at_1000
|
905 |
+
value: 88.122
|
906 |
+
- type: recall_at_3
|
907 |
+
value: 27.846
|
908 |
+
- type: recall_at_5
|
909 |
+
value: 33.638
|
910 |
+
- task:
|
911 |
+
type: Retrieval
|
912 |
+
dataset:
|
913 |
+
type: mteb/cqadupstack-unix
|
914 |
+
name: MTEB CQADupstackUnixRetrieval
|
915 |
+
config: default
|
916 |
+
split: test
|
917 |
+
revision: 6c6430d3a6d36f8d2a829195bc5dc94d7e063e53
|
918 |
+
metrics:
|
919 |
+
- type: map_at_1
|
920 |
+
value: 26.365
|
921 |
+
- type: map_at_10
|
922 |
+
value: 36.591
|
923 |
+
- type: map_at_100
|
924 |
+
value: 37.730000000000004
|
925 |
+
- type: map_at_1000
|
926 |
+
value: 37.84
|
927 |
+
- type: map_at_3
|
928 |
+
value: 33.403
|
929 |
+
- type: map_at_5
|
930 |
+
value: 35.272999999999996
|
931 |
+
- type: mrr_at_1
|
932 |
+
value: 30.503999999999998
|
933 |
+
- type: mrr_at_10
|
934 |
+
value: 39.940999999999995
|
935 |
+
- type: mrr_at_100
|
936 |
+
value: 40.818
|
937 |
+
- type: mrr_at_1000
|
938 |
+
value: 40.876000000000005
|
939 |
+
- type: mrr_at_3
|
940 |
+
value: 37.065
|
941 |
+
- type: mrr_at_5
|
942 |
+
value: 38.814
|
943 |
+
- type: ndcg_at_1
|
944 |
+
value: 30.503999999999998
|
945 |
+
- type: ndcg_at_10
|
946 |
+
value: 42.185
|
947 |
+
- type: ndcg_at_100
|
948 |
+
value: 47.416000000000004
|
949 |
+
- type: ndcg_at_1000
|
950 |
+
value: 49.705
|
951 |
+
- type: ndcg_at_3
|
952 |
+
value: 36.568
|
953 |
+
- type: ndcg_at_5
|
954 |
+
value: 39.416000000000004
|
955 |
+
- type: precision_at_1
|
956 |
+
value: 30.503999999999998
|
957 |
+
- type: precision_at_10
|
958 |
+
value: 7.276000000000001
|
959 |
+
- type: precision_at_100
|
960 |
+
value: 1.118
|
961 |
+
- type: precision_at_1000
|
962 |
+
value: 0.14300000000000002
|
963 |
+
- type: precision_at_3
|
964 |
+
value: 16.729
|
965 |
+
- type: precision_at_5
|
966 |
+
value: 12.107999999999999
|
967 |
+
- type: recall_at_1
|
968 |
+
value: 26.365
|
969 |
+
- type: recall_at_10
|
970 |
+
value: 55.616
|
971 |
+
- type: recall_at_100
|
972 |
+
value: 78.129
|
973 |
+
- type: recall_at_1000
|
974 |
+
value: 93.95599999999999
|
975 |
+
- type: recall_at_3
|
976 |
+
value: 40.686
|
977 |
+
- type: recall_at_5
|
978 |
+
value: 47.668
|
979 |
+
- task:
|
980 |
+
type: Retrieval
|
981 |
+
dataset:
|
982 |
+
type: mteb/cqadupstack-webmasters
|
983 |
+
name: MTEB CQADupstackWebmastersRetrieval
|
984 |
+
config: default
|
985 |
+
split: test
|
986 |
+
revision: 160c094312a0e1facb97e55eeddb698c0abe3571
|
987 |
+
metrics:
|
988 |
+
- type: map_at_1
|
989 |
+
value: 22.750999999999998
|
990 |
+
- type: map_at_10
|
991 |
+
value: 33.446
|
992 |
+
- type: map_at_100
|
993 |
+
value: 35.235
|
994 |
+
- type: map_at_1000
|
995 |
+
value: 35.478
|
996 |
+
- type: map_at_3
|
997 |
+
value: 29.358
|
998 |
+
- type: map_at_5
|
999 |
+
value: 31.525
|
1000 |
+
- type: mrr_at_1
|
1001 |
+
value: 27.668
|
1002 |
+
- type: mrr_at_10
|
1003 |
+
value: 37.694
|
1004 |
+
- type: mrr_at_100
|
1005 |
+
value: 38.732
|
1006 |
+
- type: mrr_at_1000
|
1007 |
+
value: 38.779
|
1008 |
+
- type: mrr_at_3
|
1009 |
+
value: 34.223
|
1010 |
+
- type: mrr_at_5
|
1011 |
+
value: 36.08
|
1012 |
+
- type: ndcg_at_1
|
1013 |
+
value: 27.668
|
1014 |
+
- type: ndcg_at_10
|
1015 |
+
value: 40.557
|
1016 |
+
- type: ndcg_at_100
|
1017 |
+
value: 46.605999999999995
|
1018 |
+
- type: ndcg_at_1000
|
1019 |
+
value: 48.917
|
1020 |
+
- type: ndcg_at_3
|
1021 |
+
value: 33.677
|
1022 |
+
- type: ndcg_at_5
|
1023 |
+
value: 36.85
|
1024 |
+
- type: precision_at_1
|
1025 |
+
value: 27.668
|
1026 |
+
- type: precision_at_10
|
1027 |
+
value: 8.3
|
1028 |
+
- type: precision_at_100
|
1029 |
+
value: 1.6260000000000001
|
1030 |
+
- type: precision_at_1000
|
1031 |
+
value: 0.253
|
1032 |
+
- type: precision_at_3
|
1033 |
+
value: 16.008
|
1034 |
+
- type: precision_at_5
|
1035 |
+
value: 12.292
|
1036 |
+
- type: recall_at_1
|
1037 |
+
value: 22.750999999999998
|
1038 |
+
- type: recall_at_10
|
1039 |
+
value: 55.643
|
1040 |
+
- type: recall_at_100
|
1041 |
+
value: 82.151
|
1042 |
+
- type: recall_at_1000
|
1043 |
+
value: 95.963
|
1044 |
+
- type: recall_at_3
|
1045 |
+
value: 36.623
|
1046 |
+
- type: recall_at_5
|
1047 |
+
value: 44.708
|
1048 |
+
- task:
|
1049 |
+
type: Retrieval
|
1050 |
+
dataset:
|
1051 |
+
type: mteb/cqadupstack-wordpress
|
1052 |
+
name: MTEB CQADupstackWordpressRetrieval
|
1053 |
+
config: default
|
1054 |
+
split: test
|
1055 |
+
revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4
|
1056 |
+
metrics:
|
1057 |
+
- type: map_at_1
|
1058 |
+
value: 17.288999999999998
|
1059 |
+
- type: map_at_10
|
1060 |
+
value: 25.903
|
1061 |
+
- type: map_at_100
|
1062 |
+
value: 27.071
|
1063 |
+
- type: map_at_1000
|
1064 |
+
value: 27.173000000000002
|
1065 |
+
- type: map_at_3
|
1066 |
+
value: 22.935
|
1067 |
+
- type: map_at_5
|
1068 |
+
value: 24.573
|
1069 |
+
- type: mrr_at_1
|
1070 |
+
value: 18.669
|
1071 |
+
- type: mrr_at_10
|
1072 |
+
value: 27.682000000000002
|
1073 |
+
- type: mrr_at_100
|
1074 |
+
value: 28.691
|
1075 |
+
- type: mrr_at_1000
|
1076 |
+
value: 28.761
|
1077 |
+
- type: mrr_at_3
|
1078 |
+
value: 24.738
|
1079 |
+
- type: mrr_at_5
|
1080 |
+
value: 26.392
|
1081 |
+
- type: ndcg_at_1
|
1082 |
+
value: 18.669
|
1083 |
+
- type: ndcg_at_10
|
1084 |
+
value: 31.335
|
1085 |
+
- type: ndcg_at_100
|
1086 |
+
value: 36.913000000000004
|
1087 |
+
- type: ndcg_at_1000
|
1088 |
+
value: 39.300000000000004
|
1089 |
+
- type: ndcg_at_3
|
1090 |
+
value: 25.423000000000002
|
1091 |
+
- type: ndcg_at_5
|
1092 |
+
value: 28.262999999999998
|
1093 |
+
- type: precision_at_1
|
1094 |
+
value: 18.669
|
1095 |
+
- type: precision_at_10
|
1096 |
+
value: 5.379
|
1097 |
+
- type: precision_at_100
|
1098 |
+
value: 0.876
|
1099 |
+
- type: precision_at_1000
|
1100 |
+
value: 0.11900000000000001
|
1101 |
+
- type: precision_at_3
|
1102 |
+
value: 11.214
|
1103 |
+
- type: precision_at_5
|
1104 |
+
value: 8.466
|
1105 |
+
- type: recall_at_1
|
1106 |
+
value: 17.288999999999998
|
1107 |
+
- type: recall_at_10
|
1108 |
+
value: 46.377
|
1109 |
+
- type: recall_at_100
|
1110 |
+
value: 71.53500000000001
|
1111 |
+
- type: recall_at_1000
|
1112 |
+
value: 88.947
|
1113 |
+
- type: recall_at_3
|
1114 |
+
value: 30.581999999999997
|
1115 |
+
- type: recall_at_5
|
1116 |
+
value: 37.354
|
1117 |
+
- task:
|
1118 |
+
type: Retrieval
|
1119 |
+
dataset:
|
1120 |
+
type: mteb/climate-fever
|
1121 |
+
name: MTEB ClimateFEVER
|
1122 |
+
config: default
|
1123 |
+
split: test
|
1124 |
+
revision: 47f2ac6acb640fc46020b02a5b59fdda04d39380
|
1125 |
+
metrics:
|
1126 |
+
- type: map_at_1
|
1127 |
+
value: 21.795
|
1128 |
+
- type: map_at_10
|
1129 |
+
value: 37.614999999999995
|
1130 |
+
- type: map_at_100
|
1131 |
+
value: 40.037
|
1132 |
+
- type: map_at_1000
|
1133 |
+
value: 40.184999999999995
|
1134 |
+
- type: map_at_3
|
1135 |
+
value: 32.221
|
1136 |
+
- type: map_at_5
|
1137 |
+
value: 35.154999999999994
|
1138 |
+
- type: mrr_at_1
|
1139 |
+
value: 50.358000000000004
|
1140 |
+
- type: mrr_at_10
|
1141 |
+
value: 62.129
|
1142 |
+
- type: mrr_at_100
|
1143 |
+
value: 62.613
|
1144 |
+
- type: mrr_at_1000
|
1145 |
+
value: 62.62
|
1146 |
+
- type: mrr_at_3
|
1147 |
+
value: 59.272999999999996
|
1148 |
+
- type: mrr_at_5
|
1149 |
+
value: 61.138999999999996
|
1150 |
+
- type: ndcg_at_1
|
1151 |
+
value: 50.358000000000004
|
1152 |
+
- type: ndcg_at_10
|
1153 |
+
value: 48.362
|
1154 |
+
- type: ndcg_at_100
|
1155 |
+
value: 55.932
|
1156 |
+
- type: ndcg_at_1000
|
1157 |
+
value: 58.062999999999995
|
1158 |
+
- type: ndcg_at_3
|
1159 |
+
value: 42.111
|
1160 |
+
- type: ndcg_at_5
|
1161 |
+
value: 44.063
|
1162 |
+
- type: precision_at_1
|
1163 |
+
value: 50.358000000000004
|
1164 |
+
- type: precision_at_10
|
1165 |
+
value: 14.677999999999999
|
1166 |
+
- type: precision_at_100
|
1167 |
+
value: 2.2950000000000004
|
1168 |
+
- type: precision_at_1000
|
1169 |
+
value: 0.271
|
1170 |
+
- type: precision_at_3
|
1171 |
+
value: 31.77
|
1172 |
+
- type: precision_at_5
|
1173 |
+
value: 23.375
|
1174 |
+
- type: recall_at_1
|
1175 |
+
value: 21.795
|
1176 |
+
- type: recall_at_10
|
1177 |
+
value: 53.846000000000004
|
1178 |
+
- type: recall_at_100
|
1179 |
+
value: 78.952
|
1180 |
+
- type: recall_at_1000
|
1181 |
+
value: 90.41900000000001
|
1182 |
+
- type: recall_at_3
|
1183 |
+
value: 37.257
|
1184 |
+
- type: recall_at_5
|
1185 |
+
value: 44.661
|
1186 |
+
- task:
|
1187 |
+
type: Retrieval
|
1188 |
+
dataset:
|
1189 |
+
type: mteb/dbpedia
|
1190 |
+
name: MTEB DBPedia
|
1191 |
+
config: default
|
1192 |
+
split: test
|
1193 |
+
revision: c0f706b76e590d620bd6618b3ca8efdd34e2d659
|
1194 |
+
metrics:
|
1195 |
+
- type: map_at_1
|
1196 |
+
value: 9.728
|
1197 |
+
- type: map_at_10
|
1198 |
+
value: 22.691
|
1199 |
+
- type: map_at_100
|
1200 |
+
value: 31.734
|
1201 |
+
- type: map_at_1000
|
1202 |
+
value: 33.464
|
1203 |
+
- type: map_at_3
|
1204 |
+
value: 16.273
|
1205 |
+
- type: map_at_5
|
1206 |
+
value: 19.016
|
1207 |
+
- type: mrr_at_1
|
1208 |
+
value: 73.25
|
1209 |
+
- type: mrr_at_10
|
1210 |
+
value: 80.782
|
1211 |
+
- type: mrr_at_100
|
1212 |
+
value: 81.01899999999999
|
1213 |
+
- type: mrr_at_1000
|
1214 |
+
value: 81.021
|
1215 |
+
- type: mrr_at_3
|
1216 |
+
value: 79.583
|
1217 |
+
- type: mrr_at_5
|
1218 |
+
value: 80.146
|
1219 |
+
- type: ndcg_at_1
|
1220 |
+
value: 59.62499999999999
|
1221 |
+
- type: ndcg_at_10
|
1222 |
+
value: 46.304
|
1223 |
+
- type: ndcg_at_100
|
1224 |
+
value: 51.23
|
1225 |
+
- type: ndcg_at_1000
|
1226 |
+
value: 58.048
|
1227 |
+
- type: ndcg_at_3
|
1228 |
+
value: 51.541000000000004
|
1229 |
+
- type: ndcg_at_5
|
1230 |
+
value: 48.635
|
1231 |
+
- type: precision_at_1
|
1232 |
+
value: 73.25
|
1233 |
+
- type: precision_at_10
|
1234 |
+
value: 36.375
|
1235 |
+
- type: precision_at_100
|
1236 |
+
value: 11.53
|
1237 |
+
- type: precision_at_1000
|
1238 |
+
value: 2.23
|
1239 |
+
- type: precision_at_3
|
1240 |
+
value: 55.583000000000006
|
1241 |
+
- type: precision_at_5
|
1242 |
+
value: 47.15
|
1243 |
+
- type: recall_at_1
|
1244 |
+
value: 9.728
|
1245 |
+
- type: recall_at_10
|
1246 |
+
value: 28.793999999999997
|
1247 |
+
- type: recall_at_100
|
1248 |
+
value: 57.885
|
1249 |
+
- type: recall_at_1000
|
1250 |
+
value: 78.759
|
1251 |
+
- type: recall_at_3
|
1252 |
+
value: 17.79
|
1253 |
+
- type: recall_at_5
|
1254 |
+
value: 21.733
|
1255 |
+
- task:
|
1256 |
+
type: Classification
|
1257 |
+
dataset:
|
1258 |
+
type: mteb/emotion
|
1259 |
+
name: MTEB EmotionClassification
|
1260 |
+
config: default
|
1261 |
+
split: test
|
1262 |
+
revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
|
1263 |
+
metrics:
|
1264 |
+
- type: accuracy
|
1265 |
+
value: 46.775
|
1266 |
+
- type: f1
|
1267 |
+
value: 41.89794273264891
|
1268 |
+
- task:
|
1269 |
+
type: Retrieval
|
1270 |
+
dataset:
|
1271 |
+
type: mteb/fever
|
1272 |
+
name: MTEB FEVER
|
1273 |
+
config: default
|
1274 |
+
split: test
|
1275 |
+
revision: bea83ef9e8fb933d90a2f1d5515737465d613e12
|
1276 |
+
metrics:
|
1277 |
+
- type: map_at_1
|
1278 |
+
value: 85.378
|
1279 |
+
- type: map_at_10
|
1280 |
+
value: 91.51
|
1281 |
+
- type: map_at_100
|
1282 |
+
value: 91.666
|
1283 |
+
- type: map_at_1000
|
1284 |
+
value: 91.676
|
1285 |
+
- type: map_at_3
|
1286 |
+
value: 90.757
|
1287 |
+
- type: map_at_5
|
1288 |
+
value: 91.277
|
1289 |
+
- type: mrr_at_1
|
1290 |
+
value: 91.839
|
1291 |
+
- type: mrr_at_10
|
1292 |
+
value: 95.49
|
1293 |
+
- type: mrr_at_100
|
1294 |
+
value: 95.493
|
1295 |
+
- type: mrr_at_1000
|
1296 |
+
value: 95.493
|
1297 |
+
- type: mrr_at_3
|
1298 |
+
value: 95.345
|
1299 |
+
- type: mrr_at_5
|
1300 |
+
value: 95.47200000000001
|
1301 |
+
- type: ndcg_at_1
|
1302 |
+
value: 91.839
|
1303 |
+
- type: ndcg_at_10
|
1304 |
+
value: 93.806
|
1305 |
+
- type: ndcg_at_100
|
1306 |
+
value: 94.255
|
1307 |
+
- type: ndcg_at_1000
|
1308 |
+
value: 94.399
|
1309 |
+
- type: ndcg_at_3
|
1310 |
+
value: 93.027
|
1311 |
+
- type: ndcg_at_5
|
1312 |
+
value: 93.51
|
1313 |
+
- type: precision_at_1
|
1314 |
+
value: 91.839
|
1315 |
+
- type: precision_at_10
|
1316 |
+
value: 10.93
|
1317 |
+
- type: precision_at_100
|
1318 |
+
value: 1.1400000000000001
|
1319 |
+
- type: precision_at_1000
|
1320 |
+
value: 0.117
|
1321 |
+
- type: precision_at_3
|
1322 |
+
value: 34.873
|
1323 |
+
- type: precision_at_5
|
1324 |
+
value: 21.44
|
1325 |
+
- type: recall_at_1
|
1326 |
+
value: 85.378
|
1327 |
+
- type: recall_at_10
|
1328 |
+
value: 96.814
|
1329 |
+
- type: recall_at_100
|
1330 |
+
value: 98.386
|
1331 |
+
- type: recall_at_1000
|
1332 |
+
value: 99.21600000000001
|
1333 |
+
- type: recall_at_3
|
1334 |
+
value: 94.643
|
1335 |
+
- type: recall_at_5
|
1336 |
+
value: 95.976
|
1337 |
+
- task:
|
1338 |
+
type: Retrieval
|
1339 |
+
dataset:
|
1340 |
+
type: mteb/fiqa
|
1341 |
+
name: MTEB FiQA2018
|
1342 |
+
config: default
|
1343 |
+
split: test
|
1344 |
+
revision: 27a168819829fe9bcd655c2df245fb19452e8e06
|
1345 |
+
metrics:
|
1346 |
+
- type: map_at_1
|
1347 |
+
value: 32.190000000000005
|
1348 |
+
- type: map_at_10
|
1349 |
+
value: 53.605000000000004
|
1350 |
+
- type: map_at_100
|
1351 |
+
value: 55.550999999999995
|
1352 |
+
- type: map_at_1000
|
1353 |
+
value: 55.665
|
1354 |
+
- type: map_at_3
|
1355 |
+
value: 46.62
|
1356 |
+
- type: map_at_5
|
1357 |
+
value: 50.517999999999994
|
1358 |
+
- type: mrr_at_1
|
1359 |
+
value: 60.34
|
1360 |
+
- type: mrr_at_10
|
1361 |
+
value: 70.775
|
1362 |
+
- type: mrr_at_100
|
1363 |
+
value: 71.238
|
1364 |
+
- type: mrr_at_1000
|
1365 |
+
value: 71.244
|
1366 |
+
- type: mrr_at_3
|
1367 |
+
value: 68.72399999999999
|
1368 |
+
- type: mrr_at_5
|
1369 |
+
value: 69.959
|
1370 |
+
- type: ndcg_at_1
|
1371 |
+
value: 60.34
|
1372 |
+
- type: ndcg_at_10
|
1373 |
+
value: 63.226000000000006
|
1374 |
+
- type: ndcg_at_100
|
1375 |
+
value: 68.60300000000001
|
1376 |
+
- type: ndcg_at_1000
|
1377 |
+
value: 69.901
|
1378 |
+
- type: ndcg_at_3
|
1379 |
+
value: 58.048
|
1380 |
+
- type: ndcg_at_5
|
1381 |
+
value: 59.789
|
1382 |
+
- type: precision_at_1
|
1383 |
+
value: 60.34
|
1384 |
+
- type: precision_at_10
|
1385 |
+
value: 17.130000000000003
|
1386 |
+
- type: precision_at_100
|
1387 |
+
value: 2.29
|
1388 |
+
- type: precision_at_1000
|
1389 |
+
value: 0.256
|
1390 |
+
- type: precision_at_3
|
1391 |
+
value: 38.323
|
1392 |
+
- type: precision_at_5
|
1393 |
+
value: 27.87
|
1394 |
+
- type: recall_at_1
|
1395 |
+
value: 32.190000000000005
|
1396 |
+
- type: recall_at_10
|
1397 |
+
value: 73.041
|
1398 |
+
- type: recall_at_100
|
1399 |
+
value: 91.31
|
1400 |
+
- type: recall_at_1000
|
1401 |
+
value: 98.104
|
1402 |
+
- type: recall_at_3
|
1403 |
+
value: 53.70399999999999
|
1404 |
+
- type: recall_at_5
|
1405 |
+
value: 62.358999999999995
|
1406 |
+
- task:
|
1407 |
+
type: Retrieval
|
1408 |
+
dataset:
|
1409 |
+
type: mteb/hotpotqa
|
1410 |
+
name: MTEB HotpotQA
|
1411 |
+
config: default
|
1412 |
+
split: test
|
1413 |
+
revision: ab518f4d6fcca38d87c25209f94beba119d02014
|
1414 |
+
metrics:
|
1415 |
+
- type: map_at_1
|
1416 |
+
value: 43.511
|
1417 |
+
- type: map_at_10
|
1418 |
+
value: 58.15
|
1419 |
+
- type: map_at_100
|
1420 |
+
value: 58.95399999999999
|
1421 |
+
- type: map_at_1000
|
1422 |
+
value: 59.018
|
1423 |
+
- type: map_at_3
|
1424 |
+
value: 55.31700000000001
|
1425 |
+
- type: map_at_5
|
1426 |
+
value: 57.04900000000001
|
1427 |
+
- type: mrr_at_1
|
1428 |
+
value: 87.022
|
1429 |
+
- type: mrr_at_10
|
1430 |
+
value: 91.32000000000001
|
1431 |
+
- type: mrr_at_100
|
1432 |
+
value: 91.401
|
1433 |
+
- type: mrr_at_1000
|
1434 |
+
value: 91.403
|
1435 |
+
- type: mrr_at_3
|
1436 |
+
value: 90.77
|
1437 |
+
- type: mrr_at_5
|
1438 |
+
value: 91.156
|
1439 |
+
- type: ndcg_at_1
|
1440 |
+
value: 87.022
|
1441 |
+
- type: ndcg_at_10
|
1442 |
+
value: 68.183
|
1443 |
+
- type: ndcg_at_100
|
1444 |
+
value: 70.781
|
1445 |
+
- type: ndcg_at_1000
|
1446 |
+
value: 72.009
|
1447 |
+
- type: ndcg_at_3
|
1448 |
+
value: 64.334
|
1449 |
+
- type: ndcg_at_5
|
1450 |
+
value: 66.449
|
1451 |
+
- type: precision_at_1
|
1452 |
+
value: 87.022
|
1453 |
+
- type: precision_at_10
|
1454 |
+
value: 13.406
|
1455 |
+
- type: precision_at_100
|
1456 |
+
value: 1.542
|
1457 |
+
- type: precision_at_1000
|
1458 |
+
value: 0.17099999999999999
|
1459 |
+
- type: precision_at_3
|
1460 |
+
value: 39.023
|
1461 |
+
- type: precision_at_5
|
1462 |
+
value: 25.080000000000002
|
1463 |
+
- type: recall_at_1
|
1464 |
+
value: 43.511
|
1465 |
+
- type: recall_at_10
|
1466 |
+
value: 67.02900000000001
|
1467 |
+
- type: recall_at_100
|
1468 |
+
value: 77.11
|
1469 |
+
- type: recall_at_1000
|
1470 |
+
value: 85.294
|
1471 |
+
- type: recall_at_3
|
1472 |
+
value: 58.535000000000004
|
1473 |
+
- type: recall_at_5
|
1474 |
+
value: 62.70099999999999
|
1475 |
+
- task:
|
1476 |
+
type: Classification
|
1477 |
+
dataset:
|
1478 |
+
type: mteb/imdb
|
1479 |
+
name: MTEB ImdbClassification
|
1480 |
+
config: default
|
1481 |
+
split: test
|
1482 |
+
revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
|
1483 |
+
metrics:
|
1484 |
+
- type: accuracy
|
1485 |
+
value: 92.0996
|
1486 |
+
- type: ap
|
1487 |
+
value: 87.86206089096373
|
1488 |
+
- type: f1
|
1489 |
+
value: 92.07554547510763
|
1490 |
+
- task:
|
1491 |
+
type: Retrieval
|
1492 |
+
dataset:
|
1493 |
+
type: mteb/msmarco
|
1494 |
+
name: MTEB MSMARCO
|
1495 |
+
config: default
|
1496 |
+
split: dev
|
1497 |
+
revision: c5a29a104738b98a9e76336939199e264163d4a0
|
1498 |
+
metrics:
|
1499 |
+
- type: map_at_1
|
1500 |
+
value: 23.179
|
1501 |
+
- type: map_at_10
|
1502 |
+
value: 35.86
|
1503 |
+
- type: map_at_100
|
1504 |
+
value: 37.025999999999996
|
1505 |
+
- type: map_at_1000
|
1506 |
+
value: 37.068
|
1507 |
+
- type: map_at_3
|
1508 |
+
value: 31.921
|
1509 |
+
- type: map_at_5
|
1510 |
+
value: 34.172000000000004
|
1511 |
+
- type: mrr_at_1
|
1512 |
+
value: 23.926
|
1513 |
+
- type: mrr_at_10
|
1514 |
+
value: 36.525999999999996
|
1515 |
+
- type: mrr_at_100
|
1516 |
+
value: 37.627
|
1517 |
+
- type: mrr_at_1000
|
1518 |
+
value: 37.665
|
1519 |
+
- type: mrr_at_3
|
1520 |
+
value: 32.653
|
1521 |
+
- type: mrr_at_5
|
1522 |
+
value: 34.897
|
1523 |
+
- type: ndcg_at_1
|
1524 |
+
value: 23.910999999999998
|
1525 |
+
- type: ndcg_at_10
|
1526 |
+
value: 42.927
|
1527 |
+
- type: ndcg_at_100
|
1528 |
+
value: 48.464
|
1529 |
+
- type: ndcg_at_1000
|
1530 |
+
value: 49.533
|
1531 |
+
- type: ndcg_at_3
|
1532 |
+
value: 34.910000000000004
|
1533 |
+
- type: ndcg_at_5
|
1534 |
+
value: 38.937
|
1535 |
+
- type: precision_at_1
|
1536 |
+
value: 23.910999999999998
|
1537 |
+
- type: precision_at_10
|
1538 |
+
value: 6.758
|
1539 |
+
- type: precision_at_100
|
1540 |
+
value: 0.9520000000000001
|
1541 |
+
- type: precision_at_1000
|
1542 |
+
value: 0.104
|
1543 |
+
- type: precision_at_3
|
1544 |
+
value: 14.838000000000001
|
1545 |
+
- type: precision_at_5
|
1546 |
+
value: 10.934000000000001
|
1547 |
+
- type: recall_at_1
|
1548 |
+
value: 23.179
|
1549 |
+
- type: recall_at_10
|
1550 |
+
value: 64.622
|
1551 |
+
- type: recall_at_100
|
1552 |
+
value: 90.135
|
1553 |
+
- type: recall_at_1000
|
1554 |
+
value: 98.301
|
1555 |
+
- type: recall_at_3
|
1556 |
+
value: 42.836999999999996
|
1557 |
+
- type: recall_at_5
|
1558 |
+
value: 52.512
|
1559 |
+
- task:
|
1560 |
+
type: Classification
|
1561 |
+
dataset:
|
1562 |
+
type: mteb/mtop_domain
|
1563 |
+
name: MTEB MTOPDomainClassification (en)
|
1564 |
+
config: en
|
1565 |
+
split: test
|
1566 |
+
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
|
1567 |
+
metrics:
|
1568 |
+
- type: accuracy
|
1569 |
+
value: 96.59598723210215
|
1570 |
+
- type: f1
|
1571 |
+
value: 96.41913500001952
|
1572 |
+
- task:
|
1573 |
+
type: Classification
|
1574 |
+
dataset:
|
1575 |
+
type: mteb/mtop_intent
|
1576 |
+
name: MTEB MTOPIntentClassification (en)
|
1577 |
+
config: en
|
1578 |
+
split: test
|
1579 |
+
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
|
1580 |
+
metrics:
|
1581 |
+
- type: accuracy
|
1582 |
+
value: 82.89557683538533
|
1583 |
+
- type: f1
|
1584 |
+
value: 63.379319722356264
|
1585 |
+
- task:
|
1586 |
+
type: Classification
|
1587 |
+
dataset:
|
1588 |
+
type: mteb/amazon_massive_intent
|
1589 |
+
name: MTEB MassiveIntentClassification (en)
|
1590 |
+
config: en
|
1591 |
+
split: test
|
1592 |
+
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
|
1593 |
+
metrics:
|
1594 |
+
- type: accuracy
|
1595 |
+
value: 78.93745796906524
|
1596 |
+
- type: f1
|
1597 |
+
value: 75.71616541785902
|
1598 |
+
- task:
|
1599 |
+
type: Classification
|
1600 |
+
dataset:
|
1601 |
+
type: mteb/amazon_massive_scenario
|
1602 |
+
name: MTEB MassiveScenarioClassification (en)
|
1603 |
+
config: en
|
1604 |
+
split: test
|
1605 |
+
revision: 7d571f92784cd94a019292a1f45445077d0ef634
|
1606 |
+
metrics:
|
1607 |
+
- type: accuracy
|
1608 |
+
value: 81.41223940820443
|
1609 |
+
- type: f1
|
1610 |
+
value: 81.2877893719078
|
1611 |
+
- task:
|
1612 |
+
type: Clustering
|
1613 |
+
dataset:
|
1614 |
+
type: mteb/medrxiv-clustering-p2p
|
1615 |
+
name: MTEB MedrxivClusteringP2P
|
1616 |
+
config: default
|
1617 |
+
split: test
|
1618 |
+
revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
|
1619 |
+
metrics:
|
1620 |
+
- type: v_measure
|
1621 |
+
value: 35.03682528325662
|
1622 |
+
- task:
|
1623 |
+
type: Clustering
|
1624 |
+
dataset:
|
1625 |
+
type: mteb/medrxiv-clustering-s2s
|
1626 |
+
name: MTEB MedrxivClusteringS2S
|
1627 |
+
config: default
|
1628 |
+
split: test
|
1629 |
+
revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
|
1630 |
+
metrics:
|
1631 |
+
- type: v_measure
|
1632 |
+
value: 32.942529406124
|
1633 |
+
- task:
|
1634 |
+
type: Reranking
|
1635 |
+
dataset:
|
1636 |
+
type: mteb/mind_small
|
1637 |
+
name: MTEB MindSmallReranking
|
1638 |
+
config: default
|
1639 |
+
split: test
|
1640 |
+
revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
|
1641 |
+
metrics:
|
1642 |
+
- type: map
|
1643 |
+
value: 31.459949660460317
|
1644 |
+
- type: mrr
|
1645 |
+
value: 32.70509582031616
|
1646 |
+
- task:
|
1647 |
+
type: Retrieval
|
1648 |
+
dataset:
|
1649 |
+
type: mteb/nfcorpus
|
1650 |
+
name: MTEB NFCorpus
|
1651 |
+
config: default
|
1652 |
+
split: test
|
1653 |
+
revision: ec0fa4fe99da2ff19ca1214b7966684033a58814
|
1654 |
+
metrics:
|
1655 |
+
- type: map_at_1
|
1656 |
+
value: 6.497
|
1657 |
+
- type: map_at_10
|
1658 |
+
value: 13.843
|
1659 |
+
- type: map_at_100
|
1660 |
+
value: 17.713
|
1661 |
+
- type: map_at_1000
|
1662 |
+
value: 19.241
|
1663 |
+
- type: map_at_3
|
1664 |
+
value: 10.096
|
1665 |
+
- type: map_at_5
|
1666 |
+
value: 11.85
|
1667 |
+
- type: mrr_at_1
|
1668 |
+
value: 48.916
|
1669 |
+
- type: mrr_at_10
|
1670 |
+
value: 57.764
|
1671 |
+
- type: mrr_at_100
|
1672 |
+
value: 58.251
|
1673 |
+
- type: mrr_at_1000
|
1674 |
+
value: 58.282999999999994
|
1675 |
+
- type: mrr_at_3
|
1676 |
+
value: 55.623999999999995
|
1677 |
+
- type: mrr_at_5
|
1678 |
+
value: 57.018
|
1679 |
+
- type: ndcg_at_1
|
1680 |
+
value: 46.594
|
1681 |
+
- type: ndcg_at_10
|
1682 |
+
value: 36.945
|
1683 |
+
- type: ndcg_at_100
|
1684 |
+
value: 34.06
|
1685 |
+
- type: ndcg_at_1000
|
1686 |
+
value: 43.05
|
1687 |
+
- type: ndcg_at_3
|
1688 |
+
value: 41.738
|
1689 |
+
- type: ndcg_at_5
|
1690 |
+
value: 39.330999999999996
|
1691 |
+
- type: precision_at_1
|
1692 |
+
value: 48.916
|
1693 |
+
- type: precision_at_10
|
1694 |
+
value: 27.43
|
1695 |
+
- type: precision_at_100
|
1696 |
+
value: 8.616
|
1697 |
+
- type: precision_at_1000
|
1698 |
+
value: 2.155
|
1699 |
+
- type: precision_at_3
|
1700 |
+
value: 39.112
|
1701 |
+
- type: precision_at_5
|
1702 |
+
value: 33.808
|
1703 |
+
- type: recall_at_1
|
1704 |
+
value: 6.497
|
1705 |
+
- type: recall_at_10
|
1706 |
+
value: 18.163
|
1707 |
+
- type: recall_at_100
|
1708 |
+
value: 34.566
|
1709 |
+
- type: recall_at_1000
|
1710 |
+
value: 67.15
|
1711 |
+
- type: recall_at_3
|
1712 |
+
value: 11.100999999999999
|
1713 |
+
- type: recall_at_5
|
1714 |
+
value: 14.205000000000002
|
1715 |
+
- task:
|
1716 |
+
type: Retrieval
|
1717 |
+
dataset:
|
1718 |
+
type: mteb/nq
|
1719 |
+
name: MTEB NQ
|
1720 |
+
config: default
|
1721 |
+
split: test
|
1722 |
+
revision: b774495ed302d8c44a3a7ea25c90dbce03968f31
|
1723 |
+
metrics:
|
1724 |
+
- type: map_at_1
|
1725 |
+
value: 31.916
|
1726 |
+
- type: map_at_10
|
1727 |
+
value: 48.123
|
1728 |
+
- type: map_at_100
|
1729 |
+
value: 49.103
|
1730 |
+
- type: map_at_1000
|
1731 |
+
value: 49.131
|
1732 |
+
- type: map_at_3
|
1733 |
+
value: 43.711
|
1734 |
+
- type: map_at_5
|
1735 |
+
value: 46.323
|
1736 |
+
- type: mrr_at_1
|
1737 |
+
value: 36.181999999999995
|
1738 |
+
- type: mrr_at_10
|
1739 |
+
value: 50.617999999999995
|
1740 |
+
- type: mrr_at_100
|
1741 |
+
value: 51.329
|
1742 |
+
- type: mrr_at_1000
|
1743 |
+
value: 51.348000000000006
|
1744 |
+
- type: mrr_at_3
|
1745 |
+
value: 47.010999999999996
|
1746 |
+
- type: mrr_at_5
|
1747 |
+
value: 49.175000000000004
|
1748 |
+
- type: ndcg_at_1
|
1749 |
+
value: 36.181999999999995
|
1750 |
+
- type: ndcg_at_10
|
1751 |
+
value: 56.077999999999996
|
1752 |
+
- type: ndcg_at_100
|
1753 |
+
value: 60.037
|
1754 |
+
- type: ndcg_at_1000
|
1755 |
+
value: 60.63499999999999
|
1756 |
+
- type: ndcg_at_3
|
1757 |
+
value: 47.859
|
1758 |
+
- type: ndcg_at_5
|
1759 |
+
value: 52.178999999999995
|
1760 |
+
- type: precision_at_1
|
1761 |
+
value: 36.181999999999995
|
1762 |
+
- type: precision_at_10
|
1763 |
+
value: 9.284
|
1764 |
+
- type: precision_at_100
|
1765 |
+
value: 1.149
|
1766 |
+
- type: precision_at_1000
|
1767 |
+
value: 0.121
|
1768 |
+
- type: precision_at_3
|
1769 |
+
value: 22.006999999999998
|
1770 |
+
- type: precision_at_5
|
1771 |
+
value: 15.695
|
1772 |
+
- type: recall_at_1
|
1773 |
+
value: 31.916
|
1774 |
+
- type: recall_at_10
|
1775 |
+
value: 77.771
|
1776 |
+
- type: recall_at_100
|
1777 |
+
value: 94.602
|
1778 |
+
- type: recall_at_1000
|
1779 |
+
value: 98.967
|
1780 |
+
- type: recall_at_3
|
1781 |
+
value: 56.528
|
1782 |
+
- type: recall_at_5
|
1783 |
+
value: 66.527
|
1784 |
+
- task:
|
1785 |
+
type: Retrieval
|
1786 |
+
dataset:
|
1787 |
+
type: mteb/quora
|
1788 |
+
name: MTEB QuoraRetrieval
|
1789 |
+
config: default
|
1790 |
+
split: test
|
1791 |
+
revision: None
|
1792 |
+
metrics:
|
1793 |
+
- type: map_at_1
|
1794 |
+
value: 71.486
|
1795 |
+
- type: map_at_10
|
1796 |
+
value: 85.978
|
1797 |
+
- type: map_at_100
|
1798 |
+
value: 86.587
|
1799 |
+
- type: map_at_1000
|
1800 |
+
value: 86.598
|
1801 |
+
- type: map_at_3
|
1802 |
+
value: 83.04899999999999
|
1803 |
+
- type: map_at_5
|
1804 |
+
value: 84.857
|
1805 |
+
- type: mrr_at_1
|
1806 |
+
value: 82.32000000000001
|
1807 |
+
- type: mrr_at_10
|
1808 |
+
value: 88.64
|
1809 |
+
- type: mrr_at_100
|
1810 |
+
value: 88.702
|
1811 |
+
- type: mrr_at_1000
|
1812 |
+
value: 88.702
|
1813 |
+
- type: mrr_at_3
|
1814 |
+
value: 87.735
|
1815 |
+
- type: mrr_at_5
|
1816 |
+
value: 88.36
|
1817 |
+
- type: ndcg_at_1
|
1818 |
+
value: 82.34
|
1819 |
+
- type: ndcg_at_10
|
1820 |
+
value: 89.67
|
1821 |
+
- type: ndcg_at_100
|
1822 |
+
value: 90.642
|
1823 |
+
- type: ndcg_at_1000
|
1824 |
+
value: 90.688
|
1825 |
+
- type: ndcg_at_3
|
1826 |
+
value: 86.932
|
1827 |
+
- type: ndcg_at_5
|
1828 |
+
value: 88.408
|
1829 |
+
- type: precision_at_1
|
1830 |
+
value: 82.34
|
1831 |
+
- type: precision_at_10
|
1832 |
+
value: 13.675999999999998
|
1833 |
+
- type: precision_at_100
|
1834 |
+
value: 1.544
|
1835 |
+
- type: precision_at_1000
|
1836 |
+
value: 0.157
|
1837 |
+
- type: precision_at_3
|
1838 |
+
value: 38.24
|
1839 |
+
- type: precision_at_5
|
1840 |
+
value: 25.068
|
1841 |
+
- type: recall_at_1
|
1842 |
+
value: 71.486
|
1843 |
+
- type: recall_at_10
|
1844 |
+
value: 96.844
|
1845 |
+
- type: recall_at_100
|
1846 |
+
value: 99.843
|
1847 |
+
- type: recall_at_1000
|
1848 |
+
value: 99.996
|
1849 |
+
- type: recall_at_3
|
1850 |
+
value: 88.92099999999999
|
1851 |
+
- type: recall_at_5
|
1852 |
+
value: 93.215
|
1853 |
+
- task:
|
1854 |
+
type: Clustering
|
1855 |
+
dataset:
|
1856 |
+
type: mteb/reddit-clustering
|
1857 |
+
name: MTEB RedditClustering
|
1858 |
+
config: default
|
1859 |
+
split: test
|
1860 |
+
revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
|
1861 |
+
metrics:
|
1862 |
+
- type: v_measure
|
1863 |
+
value: 59.75758437908334
|
1864 |
+
- task:
|
1865 |
+
type: Clustering
|
1866 |
+
dataset:
|
1867 |
+
type: mteb/reddit-clustering-p2p
|
1868 |
+
name: MTEB RedditClusteringP2P
|
1869 |
+
config: default
|
1870 |
+
split: test
|
1871 |
+
revision: 282350215ef01743dc01b456c7f5241fa8937f16
|
1872 |
+
metrics:
|
1873 |
+
- type: v_measure
|
1874 |
+
value: 68.03497914092789
|
1875 |
+
- task:
|
1876 |
+
type: Retrieval
|
1877 |
+
dataset:
|
1878 |
+
type: mteb/scidocs
|
1879 |
+
name: MTEB SCIDOCS
|
1880 |
+
config: default
|
1881 |
+
split: test
|
1882 |
+
revision: None
|
1883 |
+
metrics:
|
1884 |
+
- type: map_at_1
|
1885 |
+
value: 5.808
|
1886 |
+
- type: map_at_10
|
1887 |
+
value: 16.059
|
1888 |
+
- type: map_at_100
|
1889 |
+
value: 19.048000000000002
|
1890 |
+
- type: map_at_1000
|
1891 |
+
value: 19.43
|
1892 |
+
- type: map_at_3
|
1893 |
+
value: 10.953
|
1894 |
+
- type: map_at_5
|
1895 |
+
value: 13.363
|
1896 |
+
- type: mrr_at_1
|
1897 |
+
value: 28.7
|
1898 |
+
- type: mrr_at_10
|
1899 |
+
value: 42.436
|
1900 |
+
- type: mrr_at_100
|
1901 |
+
value: 43.599
|
1902 |
+
- type: mrr_at_1000
|
1903 |
+
value: 43.62
|
1904 |
+
- type: mrr_at_3
|
1905 |
+
value: 38.45
|
1906 |
+
- type: mrr_at_5
|
1907 |
+
value: 40.89
|
1908 |
+
- type: ndcg_at_1
|
1909 |
+
value: 28.7
|
1910 |
+
- type: ndcg_at_10
|
1911 |
+
value: 26.346000000000004
|
1912 |
+
- type: ndcg_at_100
|
1913 |
+
value: 36.758
|
1914 |
+
- type: ndcg_at_1000
|
1915 |
+
value: 42.113
|
1916 |
+
- type: ndcg_at_3
|
1917 |
+
value: 24.254
|
1918 |
+
- type: ndcg_at_5
|
1919 |
+
value: 21.506
|
1920 |
+
- type: precision_at_1
|
1921 |
+
value: 28.7
|
1922 |
+
- type: precision_at_10
|
1923 |
+
value: 13.969999999999999
|
1924 |
+
- type: precision_at_100
|
1925 |
+
value: 2.881
|
1926 |
+
- type: precision_at_1000
|
1927 |
+
value: 0.414
|
1928 |
+
- type: precision_at_3
|
1929 |
+
value: 22.933
|
1930 |
+
- type: precision_at_5
|
1931 |
+
value: 19.220000000000002
|
1932 |
+
- type: recall_at_1
|
1933 |
+
value: 5.808
|
1934 |
+
- type: recall_at_10
|
1935 |
+
value: 28.310000000000002
|
1936 |
+
- type: recall_at_100
|
1937 |
+
value: 58.475
|
1938 |
+
- type: recall_at_1000
|
1939 |
+
value: 84.072
|
1940 |
+
- type: recall_at_3
|
1941 |
+
value: 13.957
|
1942 |
+
- type: recall_at_5
|
1943 |
+
value: 19.515
|
1944 |
+
- task:
|
1945 |
+
type: STS
|
1946 |
+
dataset:
|
1947 |
+
type: mteb/sickr-sts
|
1948 |
+
name: MTEB SICK-R
|
1949 |
+
config: default
|
1950 |
+
split: test
|
1951 |
+
revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
|
1952 |
+
metrics:
|
1953 |
+
- type: cos_sim_pearson
|
1954 |
+
value: 82.39274129958557
|
1955 |
+
- type: cos_sim_spearman
|
1956 |
+
value: 79.78021235170053
|
1957 |
+
- type: euclidean_pearson
|
1958 |
+
value: 79.35335401300166
|
1959 |
+
- type: euclidean_spearman
|
1960 |
+
value: 79.7271870968275
|
1961 |
+
- type: manhattan_pearson
|
1962 |
+
value: 79.35256263340601
|
1963 |
+
- type: manhattan_spearman
|
1964 |
+
value: 79.76036386976321
|
1965 |
+
- task:
|
1966 |
+
type: STS
|
1967 |
+
dataset:
|
1968 |
+
type: mteb/sts12-sts
|
1969 |
+
name: MTEB STS12
|
1970 |
+
config: default
|
1971 |
+
split: test
|
1972 |
+
revision: a0d554a64d88156834ff5ae9920b964011b16384
|
1973 |
+
metrics:
|
1974 |
+
- type: cos_sim_pearson
|
1975 |
+
value: 83.99130429246708
|
1976 |
+
- type: cos_sim_spearman
|
1977 |
+
value: 73.88322811171203
|
1978 |
+
- type: euclidean_pearson
|
1979 |
+
value: 80.7569419170376
|
1980 |
+
- type: euclidean_spearman
|
1981 |
+
value: 73.82542155409597
|
1982 |
+
- type: manhattan_pearson
|
1983 |
+
value: 80.79468183847625
|
1984 |
+
- type: manhattan_spearman
|
1985 |
+
value: 73.87027144047784
|
1986 |
+
- task:
|
1987 |
+
type: STS
|
1988 |
+
dataset:
|
1989 |
+
type: mteb/sts13-sts
|
1990 |
+
name: MTEB STS13
|
1991 |
+
config: default
|
1992 |
+
split: test
|
1993 |
+
revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
|
1994 |
+
metrics:
|
1995 |
+
- type: cos_sim_pearson
|
1996 |
+
value: 84.88548789489907
|
1997 |
+
- type: cos_sim_spearman
|
1998 |
+
value: 85.07535893847255
|
1999 |
+
- type: euclidean_pearson
|
2000 |
+
value: 84.6637222061494
|
2001 |
+
- type: euclidean_spearman
|
2002 |
+
value: 85.14200626702456
|
2003 |
+
- type: manhattan_pearson
|
2004 |
+
value: 84.75327892344734
|
2005 |
+
- type: manhattan_spearman
|
2006 |
+
value: 85.24406181838596
|
2007 |
+
- task:
|
2008 |
+
type: STS
|
2009 |
+
dataset:
|
2010 |
+
type: mteb/sts14-sts
|
2011 |
+
name: MTEB STS14
|
2012 |
+
config: default
|
2013 |
+
split: test
|
2014 |
+
revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
|
2015 |
+
metrics:
|
2016 |
+
- type: cos_sim_pearson
|
2017 |
+
value: 82.88140039325008
|
2018 |
+
- type: cos_sim_spearman
|
2019 |
+
value: 79.61211268112362
|
2020 |
+
- type: euclidean_pearson
|
2021 |
+
value: 81.29639728816458
|
2022 |
+
- type: euclidean_spearman
|
2023 |
+
value: 79.51284578041442
|
2024 |
+
- type: manhattan_pearson
|
2025 |
+
value: 81.3381797137111
|
2026 |
+
- type: manhattan_spearman
|
2027 |
+
value: 79.55683684039808
|
2028 |
+
- task:
|
2029 |
+
type: STS
|
2030 |
+
dataset:
|
2031 |
+
type: mteb/sts15-sts
|
2032 |
+
name: MTEB STS15
|
2033 |
+
config: default
|
2034 |
+
split: test
|
2035 |
+
revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
|
2036 |
+
metrics:
|
2037 |
+
- type: cos_sim_pearson
|
2038 |
+
value: 85.16716737270485
|
2039 |
+
- type: cos_sim_spearman
|
2040 |
+
value: 86.14823841857738
|
2041 |
+
- type: euclidean_pearson
|
2042 |
+
value: 85.36325733440725
|
2043 |
+
- type: euclidean_spearman
|
2044 |
+
value: 86.04919691402029
|
2045 |
+
- type: manhattan_pearson
|
2046 |
+
value: 85.3147511385052
|
2047 |
+
- type: manhattan_spearman
|
2048 |
+
value: 86.00676205857764
|
2049 |
+
- task:
|
2050 |
+
type: STS
|
2051 |
+
dataset:
|
2052 |
+
type: mteb/sts16-sts
|
2053 |
+
name: MTEB STS16
|
2054 |
+
config: default
|
2055 |
+
split: test
|
2056 |
+
revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
|
2057 |
+
metrics:
|
2058 |
+
- type: cos_sim_pearson
|
2059 |
+
value: 80.34266645861588
|
2060 |
+
- type: cos_sim_spearman
|
2061 |
+
value: 81.59914035005882
|
2062 |
+
- type: euclidean_pearson
|
2063 |
+
value: 81.15053076245988
|
2064 |
+
- type: euclidean_spearman
|
2065 |
+
value: 81.52776915798489
|
2066 |
+
- type: manhattan_pearson
|
2067 |
+
value: 81.1819647418673
|
2068 |
+
- type: manhattan_spearman
|
2069 |
+
value: 81.57479527353556
|
2070 |
+
- task:
|
2071 |
+
type: STS
|
2072 |
+
dataset:
|
2073 |
+
type: mteb/sts17-crosslingual-sts
|
2074 |
+
name: MTEB STS17 (en-en)
|
2075 |
+
config: en-en
|
2076 |
+
split: test
|
2077 |
+
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
|
2078 |
+
metrics:
|
2079 |
+
- type: cos_sim_pearson
|
2080 |
+
value: 89.38263326821439
|
2081 |
+
- type: cos_sim_spearman
|
2082 |
+
value: 89.10946308202642
|
2083 |
+
- type: euclidean_pearson
|
2084 |
+
value: 88.87831312540068
|
2085 |
+
- type: euclidean_spearman
|
2086 |
+
value: 89.03615865973664
|
2087 |
+
- type: manhattan_pearson
|
2088 |
+
value: 88.79835539970384
|
2089 |
+
- type: manhattan_spearman
|
2090 |
+
value: 88.9766156339753
|
2091 |
+
- task:
|
2092 |
+
type: STS
|
2093 |
+
dataset:
|
2094 |
+
type: mteb/sts22-crosslingual-sts
|
2095 |
+
name: MTEB STS22 (en)
|
2096 |
+
config: en
|
2097 |
+
split: test
|
2098 |
+
revision: eea2b4fe26a775864c896887d910b76a8098ad3f
|
2099 |
+
metrics:
|
2100 |
+
- type: cos_sim_pearson
|
2101 |
+
value: 70.1574915581685
|
2102 |
+
- type: cos_sim_spearman
|
2103 |
+
value: 70.59144980004054
|
2104 |
+
- type: euclidean_pearson
|
2105 |
+
value: 71.43246306918755
|
2106 |
+
- type: euclidean_spearman
|
2107 |
+
value: 70.5544189562984
|
2108 |
+
- type: manhattan_pearson
|
2109 |
+
value: 71.4071414609503
|
2110 |
+
- type: manhattan_spearman
|
2111 |
+
value: 70.31799126163712
|
2112 |
+
- task:
|
2113 |
+
type: STS
|
2114 |
+
dataset:
|
2115 |
+
type: mteb/stsbenchmark-sts
|
2116 |
+
name: MTEB STSBenchmark
|
2117 |
+
config: default
|
2118 |
+
split: test
|
2119 |
+
revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
|
2120 |
+
metrics:
|
2121 |
+
- type: cos_sim_pearson
|
2122 |
+
value: 83.36215796635351
|
2123 |
+
- type: cos_sim_spearman
|
2124 |
+
value: 83.07276756467208
|
2125 |
+
- type: euclidean_pearson
|
2126 |
+
value: 83.06690453635584
|
2127 |
+
- type: euclidean_spearman
|
2128 |
+
value: 82.9635366303289
|
2129 |
+
- type: manhattan_pearson
|
2130 |
+
value: 83.04994049700815
|
2131 |
+
- type: manhattan_spearman
|
2132 |
+
value: 82.98120125356036
|
2133 |
+
- task:
|
2134 |
+
type: Reranking
|
2135 |
+
dataset:
|
2136 |
+
type: mteb/scidocs-reranking
|
2137 |
+
name: MTEB SciDocsRR
|
2138 |
+
config: default
|
2139 |
+
split: test
|
2140 |
+
revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
|
2141 |
+
metrics:
|
2142 |
+
- type: map
|
2143 |
+
value: 86.92530011616722
|
2144 |
+
- type: mrr
|
2145 |
+
value: 96.21826793395421
|
2146 |
+
- task:
|
2147 |
+
type: Retrieval
|
2148 |
+
dataset:
|
2149 |
+
type: mteb/scifact
|
2150 |
+
name: MTEB SciFact
|
2151 |
+
config: default
|
2152 |
+
split: test
|
2153 |
+
revision: 0228b52cf27578f30900b9e5271d331663a030d7
|
2154 |
+
metrics:
|
2155 |
+
- type: map_at_1
|
2156 |
+
value: 65.75
|
2157 |
+
- type: map_at_10
|
2158 |
+
value: 77.701
|
2159 |
+
- type: map_at_100
|
2160 |
+
value: 78.005
|
2161 |
+
- type: map_at_1000
|
2162 |
+
value: 78.006
|
2163 |
+
- type: map_at_3
|
2164 |
+
value: 75.48
|
2165 |
+
- type: map_at_5
|
2166 |
+
value: 76.927
|
2167 |
+
- type: mrr_at_1
|
2168 |
+
value: 68.333
|
2169 |
+
- type: mrr_at_10
|
2170 |
+
value: 78.511
|
2171 |
+
- type: mrr_at_100
|
2172 |
+
value: 78.704
|
2173 |
+
- type: mrr_at_1000
|
2174 |
+
value: 78.704
|
2175 |
+
- type: mrr_at_3
|
2176 |
+
value: 77
|
2177 |
+
- type: mrr_at_5
|
2178 |
+
value: 78.083
|
2179 |
+
- type: ndcg_at_1
|
2180 |
+
value: 68.333
|
2181 |
+
- type: ndcg_at_10
|
2182 |
+
value: 82.42699999999999
|
2183 |
+
- type: ndcg_at_100
|
2184 |
+
value: 83.486
|
2185 |
+
- type: ndcg_at_1000
|
2186 |
+
value: 83.511
|
2187 |
+
- type: ndcg_at_3
|
2188 |
+
value: 78.96300000000001
|
2189 |
+
- type: ndcg_at_5
|
2190 |
+
value: 81.028
|
2191 |
+
- type: precision_at_1
|
2192 |
+
value: 68.333
|
2193 |
+
- type: precision_at_10
|
2194 |
+
value: 10.667
|
2195 |
+
- type: precision_at_100
|
2196 |
+
value: 1.127
|
2197 |
+
- type: precision_at_1000
|
2198 |
+
value: 0.11299999999999999
|
2199 |
+
- type: precision_at_3
|
2200 |
+
value: 31.333
|
2201 |
+
- type: precision_at_5
|
2202 |
+
value: 20.133000000000003
|
2203 |
+
- type: recall_at_1
|
2204 |
+
value: 65.75
|
2205 |
+
- type: recall_at_10
|
2206 |
+
value: 95.578
|
2207 |
+
- type: recall_at_100
|
2208 |
+
value: 99.833
|
2209 |
+
- type: recall_at_1000
|
2210 |
+
value: 100
|
2211 |
+
- type: recall_at_3
|
2212 |
+
value: 86.506
|
2213 |
+
- type: recall_at_5
|
2214 |
+
value: 91.75
|
2215 |
+
- task:
|
2216 |
+
type: PairClassification
|
2217 |
+
dataset:
|
2218 |
+
type: mteb/sprintduplicatequestions-pairclassification
|
2219 |
+
name: MTEB SprintDuplicateQuestions
|
2220 |
+
config: default
|
2221 |
+
split: test
|
2222 |
+
revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
|
2223 |
+
metrics:
|
2224 |
+
- type: cos_sim_accuracy
|
2225 |
+
value: 99.75247524752476
|
2226 |
+
- type: cos_sim_ap
|
2227 |
+
value: 94.16065078045173
|
2228 |
+
- type: cos_sim_f1
|
2229 |
+
value: 87.22986247544205
|
2230 |
+
- type: cos_sim_precision
|
2231 |
+
value: 85.71428571428571
|
2232 |
+
- type: cos_sim_recall
|
2233 |
+
value: 88.8
|
2234 |
+
- type: dot_accuracy
|
2235 |
+
value: 99.74554455445545
|
2236 |
+
- type: dot_ap
|
2237 |
+
value: 93.90633887037264
|
2238 |
+
- type: dot_f1
|
2239 |
+
value: 86.9873417721519
|
2240 |
+
- type: dot_precision
|
2241 |
+
value: 88.1025641025641
|
2242 |
+
- type: dot_recall
|
2243 |
+
value: 85.9
|
2244 |
+
- type: euclidean_accuracy
|
2245 |
+
value: 99.75247524752476
|
2246 |
+
- type: euclidean_ap
|
2247 |
+
value: 94.17466319018055
|
2248 |
+
- type: euclidean_f1
|
2249 |
+
value: 87.3405299313052
|
2250 |
+
- type: euclidean_precision
|
2251 |
+
value: 85.74181117533719
|
2252 |
+
- type: euclidean_recall
|
2253 |
+
value: 89
|
2254 |
+
- type: manhattan_accuracy
|
2255 |
+
value: 99.75445544554455
|
2256 |
+
- type: manhattan_ap
|
2257 |
+
value: 94.27688371923577
|
2258 |
+
- type: manhattan_f1
|
2259 |
+
value: 87.74002954209749
|
2260 |
+
- type: manhattan_precision
|
2261 |
+
value: 86.42095053346266
|
2262 |
+
- type: manhattan_recall
|
2263 |
+
value: 89.1
|
2264 |
+
- type: max_accuracy
|
2265 |
+
value: 99.75445544554455
|
2266 |
+
- type: max_ap
|
2267 |
+
value: 94.27688371923577
|
2268 |
+
- type: max_f1
|
2269 |
+
value: 87.74002954209749
|
2270 |
+
- task:
|
2271 |
+
type: Clustering
|
2272 |
+
dataset:
|
2273 |
+
type: mteb/stackexchange-clustering
|
2274 |
+
name: MTEB StackExchangeClustering
|
2275 |
+
config: default
|
2276 |
+
split: test
|
2277 |
+
revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
|
2278 |
+
metrics:
|
2279 |
+
- type: v_measure
|
2280 |
+
value: 71.26500637517056
|
2281 |
+
- task:
|
2282 |
+
type: Clustering
|
2283 |
+
dataset:
|
2284 |
+
type: mteb/stackexchange-clustering-p2p
|
2285 |
+
name: MTEB StackExchangeClusteringP2P
|
2286 |
+
config: default
|
2287 |
+
split: test
|
2288 |
+
revision: 815ca46b2622cec33ccafc3735d572c266efdb44
|
2289 |
+
metrics:
|
2290 |
+
- type: v_measure
|
2291 |
+
value: 39.17507906280528
|
2292 |
+
- task:
|
2293 |
+
type: Reranking
|
2294 |
+
dataset:
|
2295 |
+
type: mteb/stackoverflowdupquestions-reranking
|
2296 |
+
name: MTEB StackOverflowDupQuestions
|
2297 |
+
config: default
|
2298 |
+
split: test
|
2299 |
+
revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
|
2300 |
+
metrics:
|
2301 |
+
- type: map
|
2302 |
+
value: 52.4848744828509
|
2303 |
+
- type: mrr
|
2304 |
+
value: 53.33678168236992
|
2305 |
+
- task:
|
2306 |
+
type: Summarization
|
2307 |
+
dataset:
|
2308 |
+
type: mteb/summeval
|
2309 |
+
name: MTEB SummEval
|
2310 |
+
config: default
|
2311 |
+
split: test
|
2312 |
+
revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
|
2313 |
+
metrics:
|
2314 |
+
- type: cos_sim_pearson
|
2315 |
+
value: 30.599864323827887
|
2316 |
+
- type: cos_sim_spearman
|
2317 |
+
value: 30.91116204665598
|
2318 |
+
- type: dot_pearson
|
2319 |
+
value: 30.82637894269936
|
2320 |
+
- type: dot_spearman
|
2321 |
+
value: 30.957573868416066
|
2322 |
+
- task:
|
2323 |
+
type: Retrieval
|
2324 |
+
dataset:
|
2325 |
+
type: mteb/trec-covid
|
2326 |
+
name: MTEB TRECCOVID
|
2327 |
+
config: default
|
2328 |
+
split: test
|
2329 |
+
revision: None
|
2330 |
+
metrics:
|
2331 |
+
- type: map_at_1
|
2332 |
+
value: 0.23600000000000002
|
2333 |
+
- type: map_at_10
|
2334 |
+
value: 1.892
|
2335 |
+
- type: map_at_100
|
2336 |
+
value: 11.586
|
2337 |
+
- type: map_at_1000
|
2338 |
+
value: 27.761999999999997
|
2339 |
+
- type: map_at_3
|
2340 |
+
value: 0.653
|
2341 |
+
- type: map_at_5
|
2342 |
+
value: 1.028
|
2343 |
+
- type: mrr_at_1
|
2344 |
+
value: 88
|
2345 |
+
- type: mrr_at_10
|
2346 |
+
value: 94
|
2347 |
+
- type: mrr_at_100
|
2348 |
+
value: 94
|
2349 |
+
- type: mrr_at_1000
|
2350 |
+
value: 94
|
2351 |
+
- type: mrr_at_3
|
2352 |
+
value: 94
|
2353 |
+
- type: mrr_at_5
|
2354 |
+
value: 94
|
2355 |
+
- type: ndcg_at_1
|
2356 |
+
value: 82
|
2357 |
+
- type: ndcg_at_10
|
2358 |
+
value: 77.48899999999999
|
2359 |
+
- type: ndcg_at_100
|
2360 |
+
value: 60.141
|
2361 |
+
- type: ndcg_at_1000
|
2362 |
+
value: 54.228
|
2363 |
+
- type: ndcg_at_3
|
2364 |
+
value: 82.358
|
2365 |
+
- type: ndcg_at_5
|
2366 |
+
value: 80.449
|
2367 |
+
- type: precision_at_1
|
2368 |
+
value: 88
|
2369 |
+
- type: precision_at_10
|
2370 |
+
value: 82.19999999999999
|
2371 |
+
- type: precision_at_100
|
2372 |
+
value: 61.760000000000005
|
2373 |
+
- type: precision_at_1000
|
2374 |
+
value: 23.684
|
2375 |
+
- type: precision_at_3
|
2376 |
+
value: 88
|
2377 |
+
- type: precision_at_5
|
2378 |
+
value: 85.6
|
2379 |
+
- type: recall_at_1
|
2380 |
+
value: 0.23600000000000002
|
2381 |
+
- type: recall_at_10
|
2382 |
+
value: 2.117
|
2383 |
+
- type: recall_at_100
|
2384 |
+
value: 14.985000000000001
|
2385 |
+
- type: recall_at_1000
|
2386 |
+
value: 51.107
|
2387 |
+
- type: recall_at_3
|
2388 |
+
value: 0.688
|
2389 |
+
- type: recall_at_5
|
2390 |
+
value: 1.1039999999999999
|
2391 |
+
- task:
|
2392 |
+
type: Retrieval
|
2393 |
+
dataset:
|
2394 |
+
type: mteb/touche2020
|
2395 |
+
name: MTEB Touche2020
|
2396 |
+
config: default
|
2397 |
+
split: test
|
2398 |
+
revision: a34f9a33db75fa0cbb21bb5cfc3dae8dc8bec93f
|
2399 |
+
metrics:
|
2400 |
+
- type: map_at_1
|
2401 |
+
value: 2.3040000000000003
|
2402 |
+
- type: map_at_10
|
2403 |
+
value: 9.025
|
2404 |
+
- type: map_at_100
|
2405 |
+
value: 15.312999999999999
|
2406 |
+
- type: map_at_1000
|
2407 |
+
value: 16.954
|
2408 |
+
- type: map_at_3
|
2409 |
+
value: 4.981
|
2410 |
+
- type: map_at_5
|
2411 |
+
value: 6.32
|
2412 |
+
- type: mrr_at_1
|
2413 |
+
value: 24.490000000000002
|
2414 |
+
- type: mrr_at_10
|
2415 |
+
value: 39.835
|
2416 |
+
- type: mrr_at_100
|
2417 |
+
value: 40.8
|
2418 |
+
- type: mrr_at_1000
|
2419 |
+
value: 40.8
|
2420 |
+
- type: mrr_at_3
|
2421 |
+
value: 35.034
|
2422 |
+
- type: mrr_at_5
|
2423 |
+
value: 37.687
|
2424 |
+
- type: ndcg_at_1
|
2425 |
+
value: 22.448999999999998
|
2426 |
+
- type: ndcg_at_10
|
2427 |
+
value: 22.545
|
2428 |
+
- type: ndcg_at_100
|
2429 |
+
value: 35.931999999999995
|
2430 |
+
- type: ndcg_at_1000
|
2431 |
+
value: 47.665
|
2432 |
+
- type: ndcg_at_3
|
2433 |
+
value: 23.311
|
2434 |
+
- type: ndcg_at_5
|
2435 |
+
value: 22.421
|
2436 |
+
- type: precision_at_1
|
2437 |
+
value: 24.490000000000002
|
2438 |
+
- type: precision_at_10
|
2439 |
+
value: 20.408
|
2440 |
+
- type: precision_at_100
|
2441 |
+
value: 7.815999999999999
|
2442 |
+
- type: precision_at_1000
|
2443 |
+
value: 1.553
|
2444 |
+
- type: precision_at_3
|
2445 |
+
value: 25.169999999999998
|
2446 |
+
- type: precision_at_5
|
2447 |
+
value: 23.265
|
2448 |
+
- type: recall_at_1
|
2449 |
+
value: 2.3040000000000003
|
2450 |
+
- type: recall_at_10
|
2451 |
+
value: 15.693999999999999
|
2452 |
+
- type: recall_at_100
|
2453 |
+
value: 48.917
|
2454 |
+
- type: recall_at_1000
|
2455 |
+
value: 84.964
|
2456 |
+
- type: recall_at_3
|
2457 |
+
value: 6.026
|
2458 |
+
- type: recall_at_5
|
2459 |
+
value: 9.066
|
2460 |
+
- task:
|
2461 |
+
type: Classification
|
2462 |
+
dataset:
|
2463 |
+
type: mteb/toxic_conversations_50k
|
2464 |
+
name: MTEB ToxicConversationsClassification
|
2465 |
+
config: default
|
2466 |
+
split: test
|
2467 |
+
revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
|
2468 |
+
metrics:
|
2469 |
+
- type: accuracy
|
2470 |
+
value: 82.6074
|
2471 |
+
- type: ap
|
2472 |
+
value: 23.187467098602013
|
2473 |
+
- type: f1
|
2474 |
+
value: 65.36829506379657
|
2475 |
+
- task:
|
2476 |
+
type: Classification
|
2477 |
+
dataset:
|
2478 |
+
type: mteb/tweet_sentiment_extraction
|
2479 |
+
name: MTEB TweetSentimentExtractionClassification
|
2480 |
+
config: default
|
2481 |
+
split: test
|
2482 |
+
revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
|
2483 |
+
metrics:
|
2484 |
+
- type: accuracy
|
2485 |
+
value: 63.16355404640635
|
2486 |
+
- type: f1
|
2487 |
+
value: 63.534725639863346
|
2488 |
+
- task:
|
2489 |
+
type: Clustering
|
2490 |
+
dataset:
|
2491 |
+
type: mteb/twentynewsgroups-clustering
|
2492 |
+
name: MTEB TwentyNewsgroupsClustering
|
2493 |
+
config: default
|
2494 |
+
split: test
|
2495 |
+
revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
|
2496 |
+
metrics:
|
2497 |
+
- type: v_measure
|
2498 |
+
value: 50.91004094411276
|
2499 |
+
- task:
|
2500 |
+
type: PairClassification
|
2501 |
+
dataset:
|
2502 |
+
type: mteb/twittersemeval2015-pairclassification
|
2503 |
+
name: MTEB TwitterSemEval2015
|
2504 |
+
config: default
|
2505 |
+
split: test
|
2506 |
+
revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
|
2507 |
+
metrics:
|
2508 |
+
- type: cos_sim_accuracy
|
2509 |
+
value: 86.55301901412649
|
2510 |
+
- type: cos_sim_ap
|
2511 |
+
value: 75.25312618556728
|
2512 |
+
- type: cos_sim_f1
|
2513 |
+
value: 68.76561719140429
|
2514 |
+
- type: cos_sim_precision
|
2515 |
+
value: 65.3061224489796
|
2516 |
+
- type: cos_sim_recall
|
2517 |
+
value: 72.61213720316623
|
2518 |
+
- type: dot_accuracy
|
2519 |
+
value: 86.29671574178936
|
2520 |
+
- type: dot_ap
|
2521 |
+
value: 75.11910195501207
|
2522 |
+
- type: dot_f1
|
2523 |
+
value: 68.44048376830045
|
2524 |
+
- type: dot_precision
|
2525 |
+
value: 66.12546125461255
|
2526 |
+
- type: dot_recall
|
2527 |
+
value: 70.92348284960423
|
2528 |
+
- type: euclidean_accuracy
|
2529 |
+
value: 86.5828217202122
|
2530 |
+
- type: euclidean_ap
|
2531 |
+
value: 75.22986344900924
|
2532 |
+
- type: euclidean_f1
|
2533 |
+
value: 68.81267797449549
|
2534 |
+
- type: euclidean_precision
|
2535 |
+
value: 64.8238861674831
|
2536 |
+
- type: euclidean_recall
|
2537 |
+
value: 73.3245382585752
|
2538 |
+
- type: manhattan_accuracy
|
2539 |
+
value: 86.61262442629791
|
2540 |
+
- type: manhattan_ap
|
2541 |
+
value: 75.24401608557328
|
2542 |
+
- type: manhattan_f1
|
2543 |
+
value: 68.80473982483257
|
2544 |
+
- type: manhattan_precision
|
2545 |
+
value: 67.21187720181177
|
2546 |
+
- type: manhattan_recall
|
2547 |
+
value: 70.47493403693932
|
2548 |
+
- type: max_accuracy
|
2549 |
+
value: 86.61262442629791
|
2550 |
+
- type: max_ap
|
2551 |
+
value: 75.25312618556728
|
2552 |
+
- type: max_f1
|
2553 |
+
value: 68.81267797449549
|
2554 |
+
- task:
|
2555 |
+
type: PairClassification
|
2556 |
+
dataset:
|
2557 |
+
type: mteb/twitterurlcorpus-pairclassification
|
2558 |
+
name: MTEB TwitterURLCorpus
|
2559 |
+
config: default
|
2560 |
+
split: test
|
2561 |
+
revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
|
2562 |
+
metrics:
|
2563 |
+
- type: cos_sim_accuracy
|
2564 |
+
value: 88.10688089416696
|
2565 |
+
- type: cos_sim_ap
|
2566 |
+
value: 84.17862178779863
|
2567 |
+
- type: cos_sim_f1
|
2568 |
+
value: 76.17305208781748
|
2569 |
+
- type: cos_sim_precision
|
2570 |
+
value: 71.31246641590543
|
2571 |
+
- type: cos_sim_recall
|
2572 |
+
value: 81.74468740375731
|
2573 |
+
- type: dot_accuracy
|
2574 |
+
value: 88.1844995536927
|
2575 |
+
- type: dot_ap
|
2576 |
+
value: 84.33816725235876
|
2577 |
+
- type: dot_f1
|
2578 |
+
value: 76.43554032918746
|
2579 |
+
- type: dot_precision
|
2580 |
+
value: 74.01557767200346
|
2581 |
+
- type: dot_recall
|
2582 |
+
value: 79.0190945488143
|
2583 |
+
- type: euclidean_accuracy
|
2584 |
+
value: 88.07001203089223
|
2585 |
+
- type: euclidean_ap
|
2586 |
+
value: 84.12267000814985
|
2587 |
+
- type: euclidean_f1
|
2588 |
+
value: 76.12232600180778
|
2589 |
+
- type: euclidean_precision
|
2590 |
+
value: 74.50604541433205
|
2591 |
+
- type: euclidean_recall
|
2592 |
+
value: 77.81028641823221
|
2593 |
+
- type: manhattan_accuracy
|
2594 |
+
value: 88.06419063142779
|
2595 |
+
- type: manhattan_ap
|
2596 |
+
value: 84.11648917164187
|
2597 |
+
- type: manhattan_f1
|
2598 |
+
value: 76.20579953925474
|
2599 |
+
- type: manhattan_precision
|
2600 |
+
value: 72.56772755762935
|
2601 |
+
- type: manhattan_recall
|
2602 |
+
value: 80.22790267939637
|
2603 |
+
- type: max_accuracy
|
2604 |
+
value: 88.1844995536927
|
2605 |
+
- type: max_ap
|
2606 |
+
value: 84.33816725235876
|
2607 |
+
- type: max_f1
|
2608 |
+
value: 76.43554032918746
|
2609 |
+
---
|
2610 |
+
|
2611 |
+
<!-- **English** | [中文](./README_zh.md) -->
|
2612 |
+
|
2613 |
+
# gte-large-en-v1.5
|
2614 |
+
|
2615 |
+
We introduce `gte-v1.5` series, upgraded `gte` embeddings that support the context length of up to **8192**, while further enhancing model performance.
|
2616 |
+
The models are built upon the `transformer++` encoder [backbone](https://huggingface.co/Alibaba-NLP/new-impl) (BERT + RoPE + GLU).
|
2617 |
+
|
2618 |
+
The `gte-v1.5` series achieve state-of-the-art scores on the MTEB benchmark within the same model size category and prodvide competitive on the LoCo long-context retrieval tests (refer to [Evaluation](#evaluation)).
|
2619 |
+
|
2620 |
+
We also present the [`gte-Qwen1.5-7B-instruct`](https://huggingface.co/Alibaba-NLP/gte-Qwen1.5-7B-instruct),
|
2621 |
+
a SOTA instruction-tuned multi-lingual embedding model that ranked 2nd in MTEB and 1st in C-MTEB.
|
2622 |
+
|
2623 |
+
<!-- Provide a longer summary of what this model is. -->
|
2624 |
+
|
2625 |
+
- **Developed by:** Institute for Intelligent Computing, Alibaba Group
|
2626 |
+
- **Model type:** Text Embeddings
|
2627 |
+
- **Paper:** [mGTE: Generalized Long-Context Text Representation and Reranking
|
2628 |
+
Models for Multilingual Text Retrieval](https://arxiv.org/pdf/2407.19669)
|
2629 |
+
|
2630 |
+
<!-- - **Demo [optional]:** [More Information Needed] -->
|
2631 |
+
|
2632 |
+
### Model list
|
2633 |
+
|
2634 |
+
| Models | Language | Model Size | Max Seq. Length | Dimension | MTEB-en | LoCo |
|
2635 |
+
|:-----: | :-----: |:-----: |:-----: |:-----: | :-----: | :-----: |
|
2636 |
+
|[`gte-Qwen1.5-7B-instruct`](https://huggingface.co/Alibaba-NLP/gte-Qwen1.5-7B-instruct)| Multiple | 7720 | 32768 | 4096 | 67.34 | 87.57 |
|
2637 |
+
|[`gte-large-en-v1.5`](https://huggingface.co/Alibaba-NLP/gte-large-en-v1.5) | English | 434 | 8192 | 1024 | 65.39 | 86.71 |
|
2638 |
+
|[`gte-base-en-v1.5`](https://huggingface.co/Alibaba-NLP/gte-base-en-v1.5) | English | 137 | 8192 | 768 | 64.11 | 87.44 |
|
2639 |
+
|
2640 |
+
|
2641 |
+
## How to Get Started with the Model
|
2642 |
+
|
2643 |
+
Use the code below to get started with the model.
|
2644 |
+
|
2645 |
+
```python
|
2646 |
+
# Requires transformers>=4.36.0
|
2647 |
+
|
2648 |
+
import torch.nn.functional as F
|
2649 |
+
from transformers import AutoModel, AutoTokenizer
|
2650 |
+
|
2651 |
+
input_texts = [
|
2652 |
+
"what is the capital of China?",
|
2653 |
+
"how to implement quick sort in python?",
|
2654 |
+
"Beijing",
|
2655 |
+
"sorting algorithms"
|
2656 |
+
]
|
2657 |
+
|
2658 |
+
model_path = 'Alibaba-NLP/gte-large-en-v1.5'
|
2659 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
2660 |
+
model = AutoModel.from_pretrained(model_path, trust_remote_code=True)
|
2661 |
+
|
2662 |
+
# Tokenize the input texts
|
2663 |
+
batch_dict = tokenizer(input_texts, max_length=8192, padding=True, truncation=True, return_tensors='pt')
|
2664 |
+
|
2665 |
+
outputs = model(**batch_dict)
|
2666 |
+
embeddings = outputs.last_hidden_state[:, 0]
|
2667 |
+
|
2668 |
+
# (Optionally) normalize embeddings
|
2669 |
+
embeddings = F.normalize(embeddings, p=2, dim=1)
|
2670 |
+
scores = (embeddings[:1] @ embeddings[1:].T) * 100
|
2671 |
+
print(scores.tolist())
|
2672 |
+
```
|
2673 |
+
|
2674 |
+
**It is recommended to install xformers and enable unpadding for acceleration, refer to [enable-unpadding-and-xformers](https://huggingface.co/Alibaba-NLP/new-impl#recommendation-enable-unpadding-and-acceleration-with-xformers).**
|
2675 |
+
|
2676 |
+
|
2677 |
+
Use with sentence-transformers:
|
2678 |
+
|
2679 |
+
```python
|
2680 |
+
# Requires sentence_transformers>=2.7.0
|
2681 |
+
|
2682 |
+
from sentence_transformers import SentenceTransformer
|
2683 |
+
from sentence_transformers.util import cos_sim
|
2684 |
+
|
2685 |
+
sentences = ['That is a happy person', 'That is a very happy person']
|
2686 |
+
|
2687 |
+
model = SentenceTransformer('Alibaba-NLP/gte-large-en-v1.5', trust_remote_code=True)
|
2688 |
+
embeddings = model.encode(sentences)
|
2689 |
+
print(cos_sim(embeddings[0], embeddings[1]))
|
2690 |
+
```
|
2691 |
+
|
2692 |
+
Use with `transformers.js`:
|
2693 |
+
|
2694 |
+
```js
|
2695 |
+
// npm i @xenova/transformers
|
2696 |
+
import { pipeline, dot } from '@xenova/transformers';
|
2697 |
+
|
2698 |
+
// Create feature extraction pipeline
|
2699 |
+
const extractor = await pipeline('feature-extraction', 'Alibaba-NLP/gte-large-en-v1.5', {
|
2700 |
+
quantized: false, // Comment out this line to use the quantized version
|
2701 |
+
});
|
2702 |
+
|
2703 |
+
// Generate sentence embeddings
|
2704 |
+
const sentences = [
|
2705 |
+
"what is the capital of China?",
|
2706 |
+
"how to implement quick sort in python?",
|
2707 |
+
"Beijing",
|
2708 |
+
"sorting algorithms"
|
2709 |
+
]
|
2710 |
+
const output = await extractor(sentences, { normalize: true, pooling: 'cls' });
|
2711 |
+
|
2712 |
+
// Compute similarity scores
|
2713 |
+
const [source_embeddings, ...document_embeddings ] = output.tolist();
|
2714 |
+
const similarities = document_embeddings.map(x => 100 * dot(source_embeddings, x));
|
2715 |
+
console.log(similarities); // [41.86354093370361, 77.07076371259589, 37.02981979677899]
|
2716 |
+
```
|
2717 |
+
|
2718 |
+
## Training Details
|
2719 |
+
|
2720 |
+
### Training Data
|
2721 |
+
|
2722 |
+
- Masked language modeling (MLM): `c4-en`
|
2723 |
+
- Weak-supervised contrastive pre-training (CPT): [GTE](https://arxiv.org/pdf/2308.03281.pdf) pre-training data
|
2724 |
+
- Supervised contrastive fine-tuning: [GTE](https://arxiv.org/pdf/2308.03281.pdf) fine-tuning data
|
2725 |
+
|
2726 |
+
### Training Procedure
|
2727 |
+
|
2728 |
+
To enable the backbone model to support a context length of 8192, we adopted a multi-stage training strategy.
|
2729 |
+
The model first undergoes preliminary MLM pre-training on shorter lengths.
|
2730 |
+
And then, we resample the data, reducing the proportion of short texts, and continue the MLM pre-training.
|
2731 |
+
|
2732 |
+
The entire training process is as follows:
|
2733 |
+
- MLM-512: lr 2e-4, mlm_probability 0.3, batch_size 4096, num_steps 300000, rope_base 10000
|
2734 |
+
- MLM-2048: lr 5e-5, mlm_probability 0.3, batch_size 4096, num_steps 30000, rope_base 10000
|
2735 |
+
- [MLM-8192](https://huggingface.co/Alibaba-NLP/gte-en-mlm-large): lr 5e-5, mlm_probability 0.3, batch_size 1024, num_steps 30000, rope_base 160000
|
2736 |
+
- CPT: max_len 512, lr 5e-5, batch_size 28672, num_steps 100000
|
2737 |
+
- Fine-tuning: TODO
|
2738 |
+
|
2739 |
+
|
2740 |
+
## Evaluation
|
2741 |
+
|
2742 |
+
|
2743 |
+
### MTEB
|
2744 |
+
|
2745 |
+
The results of other models are retrieved from [MTEB leaderboard](https://huggingface.co/spaces/mteb/leaderboard).
|
2746 |
+
|
2747 |
+
The gte evaluation setting: `mteb==1.2.0, fp16 auto mix precision, max_length=8192`, and set ntk scaling factor to 2 (equivalent to rope_base * 2).
|
2748 |
+
|
2749 |
+
| Model Name | Param Size (M) | Dimension | Sequence Length | Average (56) | Class. (12) | Clust. (11) | Pair Class. (3) | Reran. (4) | Retr. (15) | STS (10) | Summ. (1) |
|
2750 |
+
|:----:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|
|
2751 |
+
| [**gte-large-en-v1.5**](https://huggingface.co/Alibaba-NLP/gte-large-en-v1.5) | 409 | 1024 | 8192 | **65.39** | 77.75 | 47.95 | 84.63 | 58.50 | 57.91 | 81.43 | 30.91 |
|
2752 |
+
| [mxbai-embed-large-v1](https://huggingface.co/mixedbread-ai/mxbai-embed-large-v1) | 335 | 1024 | 512 | 64.68 | 75.64 | 46.71 | 87.2 | 60.11 | 54.39 | 85 | 32.71 |
|
2753 |
+
| [multilingual-e5-large-instruct](https://huggingface.co/intfloat/multilingual-e5-large-instruct) | 560 | 1024 | 514 | 64.41 | 77.56 | 47.1 | 86.19 | 58.58 | 52.47 | 84.78 | 30.39 |
|
2754 |
+
| [bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5)| 335 | 1024 | 512 | 64.23 | 75.97 | 46.08 | 87.12 | 60.03 | 54.29 | 83.11 | 31.61 |
|
2755 |
+
| [**gte-base-en-v1.5**](https://huggingface.co/Alibaba-NLP/gte-base-en-v1.5) | 137 | 768 | 8192 | **64.11** | 77.17 | 46.82 | 85.33 | 57.66 | 54.09 | 81.97 | 31.17 |
|
2756 |
+
| [bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5)| 109 | 768 | 512 | 63.55 | 75.53 | 45.77 | 86.55 | 58.86 | 53.25 | 82.4 | 31.07 |
|
2757 |
+
|
2758 |
+
|
2759 |
+
### LoCo
|
2760 |
+
|
2761 |
+
| Model Name | Dimension | Sequence Length | Average (5) | QsmsumRetrieval | SummScreenRetrieval | QasperAbastractRetrieval | QasperTitleRetrieval | GovReportRetrieval |
|
2762 |
+
|:----:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|
|
2763 |
+
| [gte-qwen1.5-7b](https://huggingface.co/Alibaba-NLP/gte-qwen1.5-7b) | 4096 | 32768 | 87.57 | 49.37 | 93.10 | 99.67 | 97.54 | 98.21 |
|
2764 |
+
| [gte-large-v1.5](https://huggingface.co/Alibaba-NLP/gte-large-v1.5) |1024 | 8192 | 86.71 | 44.55 | 92.61 | 99.82 | 97.81 | 98.74 |
|
2765 |
+
| [gte-base-v1.5](https://huggingface.co/Alibaba-NLP/gte-base-v1.5) | 768 | 8192 | 87.44 | 49.91 | 91.78 | 99.82 | 97.13 | 98.58 |
|
2766 |
+
|
2767 |
+
|
2768 |
+
|
2769 |
+
## Citation
|
2770 |
+
|
2771 |
+
If you find our paper or models helpful, please consider citing them as follows:
|
2772 |
+
|
2773 |
+
```
|
2774 |
+
@article{zhang2024mgte,
|
2775 |
+
title={mGTE: Generalized Long-Context Text Representation and Reranking Models for Multilingual Text Retrieval},
|
2776 |
+
author={Zhang, Xin and Zhang, Yanzhao and Long, Dingkun and Xie, Wen and Dai, Ziqi and Tang, Jialong and Lin, Huan and Yang, Baosong and Xie, Pengjun and Huang, Fei and others},
|
2777 |
+
journal={arXiv preprint arXiv:2407.19669},
|
2778 |
+
year={2024}
|
2779 |
+
}
|
2780 |
+
|
2781 |
+
@article{li2023towards,
|
2782 |
+
title={Towards general text embeddings with multi-stage contrastive learning},
|
2783 |
+
author={Li, Zehan and Zhang, Xin and Zhang, Yanzhao and Long, Dingkun and Xie, Pengjun and Zhang, Meishan},
|
2784 |
+
journal={arXiv preprint arXiv:2308.03281},
|
2785 |
+
year={2023}
|
2786 |
+
}
|
2787 |
+
```
|
config.json
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "Alibaba-NLP/gte-large-en-v1.5",
|
3 |
+
"architectures": [
|
4 |
+
"NewModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.0,
|
7 |
+
"auto_map": {
|
8 |
+
"AutoConfig": "Alibaba-NLP/new-impl--configuration.NewConfig",
|
9 |
+
"AutoModel": "Alibaba-NLP/new-impl--modeling.NewModel",
|
10 |
+
"AutoModelForMaskedLM": "Alibaba-NLP/new-impl--modeling.NewForMaskedLM",
|
11 |
+
"AutoModelForMultipleChoice": "Alibaba-NLP/new-impl--modeling.NewForMultipleChoice",
|
12 |
+
"AutoModelForQuestionAnswering": "Alibaba-NLP/new-impl--modeling.NewForQuestionAnswering",
|
13 |
+
"AutoModelForSequenceClassification": "Alibaba-NLP/new-impl--modeling.NewForSequenceClassification",
|
14 |
+
"AutoModelForTokenClassification": "Alibaba-NLP/new-impl--modeling.NewForTokenClassification"
|
15 |
+
},
|
16 |
+
"classifier_dropout": null,
|
17 |
+
"hidden_act": "gelu",
|
18 |
+
"hidden_dropout_prob": 0.1,
|
19 |
+
"hidden_size": 1024,
|
20 |
+
"initializer_range": 0.02,
|
21 |
+
"intermediate_size": 4096,
|
22 |
+
"layer_norm_eps": 1e-12,
|
23 |
+
"layer_norm_type": "layer_norm",
|
24 |
+
"logn_attention_clip1": false,
|
25 |
+
"logn_attention_scale": false,
|
26 |
+
"max_position_embeddings": 8192,
|
27 |
+
"model_type": "new",
|
28 |
+
"num_attention_heads": 16,
|
29 |
+
"num_hidden_layers": 24,
|
30 |
+
"pack_qkv": true,
|
31 |
+
"pad_token_id": 0,
|
32 |
+
"position_embedding_type": "rope",
|
33 |
+
"rope_scaling": {
|
34 |
+
"factor": 2.0,
|
35 |
+
"type": "ntk"
|
36 |
+
},
|
37 |
+
"rope_theta": 160000,
|
38 |
+
"torch_dtype": "float32",
|
39 |
+
"transformers_version": "4.39.3",
|
40 |
+
"type_vocab_size": 2,
|
41 |
+
"unpad_inputs": false,
|
42 |
+
"use_memory_efficient_attention": false,
|
43 |
+
"vocab_size": 30528
|
44 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.2.0",
|
4 |
+
"transformers": "4.39.3",
|
5 |
+
"pytorch": "2.4.0+cu124"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": null
|
10 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fe6e4200b833d5332b7c61859d7f4ff204211b1583d732353efe1b7594176cf2
|
3 |
+
size 1736585680
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 8192,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": true,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_lower_case": true,
|
47 |
+
"mask_token": "[MASK]",
|
48 |
+
"max_length": 8000,
|
49 |
+
"model_max_length": 8192,
|
50 |
+
"pad_to_multiple_of": null,
|
51 |
+
"pad_token": "[PAD]",
|
52 |
+
"pad_token_type_id": 0,
|
53 |
+
"padding_side": "right",
|
54 |
+
"sep_token": "[SEP]",
|
55 |
+
"stride": 0,
|
56 |
+
"strip_accents": null,
|
57 |
+
"tokenize_chinese_chars": true,
|
58 |
+
"tokenizer_class": "BertTokenizer",
|
59 |
+
"truncation_side": "right",
|
60 |
+
"truncation_strategy": "longest_first",
|
61 |
+
"unk_token": "[UNK]"
|
62 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|