--- license: apache-2.0 language: - en library_name: transformers pipeline_tag: zero-shot-classification tags: - ORTModelForSequenceClassification --- # DeBERTa-v3-base-onnx-quantized This model has been quantized using the base model: [sileod/deberta-v3-base-tasksource-nli](https://huggingface.co/sileod/deberta-v3-base-tasksource-nli), To use this model you need to have `onnxruntime` installed on your machine. To use this model, you can check out my [Huggingface Spaces](https://huggingface.co/spaces/arnabdhar/Zero-Shot-Classification-DeBERTa-Quantized). The source code for the Huggingface Application can be found on [GitHub](https://github.com/arnabd64/Zero-Shot-Text-Classification). To run this model on your machine use the following code. Note that this model is optimized for CPU with AVX2 support. 1. Install dependencies ```bash pip install transformers optimum[onnxruntime] ``` 2. Run the model: ```python # load libraries from transformers import AutoTokenizer from optimum.onnxruntime import ORTModelForSequenceClassification from optimum.pipelines import pipeline # load model components MODEL_ID = "pitangent-ds/deberta-v3-nli-onnx-quantized" tokenizer = AutoTokenizer.from_pretrained(MODEL_ID) model = ORTModelForSequenceClassification.from_pretrained(MODEL_ID) # load the pipeline classifier = pipeline("zero-shot-classification", tokenizer=tokenizer, model=model) # inference text = "The jacket that I bought is awesome" candidate_labels = ["positive", "negative"] results = classifier(text, candidate_labels) ```