Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v2.zip +3 -0
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v2/data +94 -0
- a2c-PandaReachDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v2/policy.pth +3 -0
- a2c-PandaReachDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v2/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v2
|
16 |
+
type: PandaReachDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -1.12 +/- 0.12
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:43565a0d60c6e516a0886bd0cf3d21e23db30356a9adb4b7deb134861930785c
|
3 |
+
size 108106
|
a2c-PandaReachDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-PandaReachDense-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f2f35224160>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc_data object at 0x7f2f3521c780>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"observation_space": {
|
23 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
24 |
+
":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
|
25 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
26 |
+
"_shape": null,
|
27 |
+
"dtype": null,
|
28 |
+
"_np_random": null
|
29 |
+
},
|
30 |
+
"action_space": {
|
31 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
32 |
+
":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
33 |
+
"dtype": "float32",
|
34 |
+
"_shape": [
|
35 |
+
3
|
36 |
+
],
|
37 |
+
"low": "[-1. -1. -1.]",
|
38 |
+
"high": "[1. 1. 1.]",
|
39 |
+
"bounded_below": "[ True True True]",
|
40 |
+
"bounded_above": "[ True True True]",
|
41 |
+
"_np_random": null
|
42 |
+
},
|
43 |
+
"n_envs": 4,
|
44 |
+
"num_timesteps": 500000,
|
45 |
+
"_total_timesteps": 500000,
|
46 |
+
"_num_timesteps_at_start": 0,
|
47 |
+
"seed": null,
|
48 |
+
"action_noise": null,
|
49 |
+
"start_time": 1676159583829078106,
|
50 |
+
"learning_rate": 0.0002,
|
51 |
+
"tensorboard_log": null,
|
52 |
+
"lr_schedule": {
|
53 |
+
":type:": "<class 'function'>",
|
54 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/Kjbi6xxDLYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
55 |
+
},
|
56 |
+
"_last_obs": {
|
57 |
+
":type:": "<class 'collections.OrderedDict'>",
|
58 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAvSi/PrY+/7sQWxk/vSi/PrY+/7sQWxk/vSi/PrY+/7sQWxk/vSi/PrY+/7sQWxk/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA5z2AP1PVKL/GTta/NGZjPx5f0z4MrMM/mIexPxIlgz/v058/3xBmP2kztj/4aqQ/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAC9KL8+tj7/uxBbGT9yCKo5zPR4uoIKlDy9KL8+tj7/uxBbGT9yCKo5zPR4uoIKlDy9KL8+tj7/uxBbGT9yCKo5zPR4uoIKlDy9KL8+tj7/uxBbGT9yCKo5zPR4uoIKlDyUaA5LBEsGhpRoEnSUUpR1Lg==",
|
59 |
+
"achieved_goal": "[[ 0.37335768 -0.00778946 0.59904575]\n [ 0.37335768 -0.00778946 0.59904575]\n [ 0.37335768 -0.00778946 0.59904575]\n [ 0.37335768 -0.00778946 0.59904575]]",
|
60 |
+
"desired_goal": "[[ 1.0018891 -0.65950507 -1.674279 ]\n [ 0.88827825 0.41283506 1.528688 ]\n [ 1.3869505 1.0245688 1.2486552 ]\n [ 0.89869493 1.4234439 1.2845144 ]]",
|
61 |
+
"observation": "[[ 3.7335768e-01 -7.7894581e-03 5.9904575e-01 3.2431219e-04\n -9.4969268e-04 1.8071417e-02]\n [ 3.7335768e-01 -7.7894581e-03 5.9904575e-01 3.2431219e-04\n -9.4969268e-04 1.8071417e-02]\n [ 3.7335768e-01 -7.7894581e-03 5.9904575e-01 3.2431219e-04\n -9.4969268e-04 1.8071417e-02]\n [ 3.7335768e-01 -7.7894581e-03 5.9904575e-01 3.2431219e-04\n -9.4969268e-04 1.8071417e-02]]"
|
62 |
+
},
|
63 |
+
"_last_episode_starts": {
|
64 |
+
":type:": "<class 'numpy.ndarray'>",
|
65 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
66 |
+
},
|
67 |
+
"_last_original_obs": {
|
68 |
+
":type:": "<class 'collections.OrderedDict'>",
|
69 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAwhsOPtGSmr1Lo/Q9J78TPjbZiL0v4Fc9RoMCvTWj073dg/E9+huBve2AiD2LppY+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
70 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
+
"desired_goal": "[[ 0.13877776 -0.07547534 0.11945208]\n [ 0.14428388 -0.06682055 0.05270403]\n [-0.03186347 -0.10333864 0.11792729]\n [-0.06304164 0.06665216 0.29423937]]",
|
72 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
+
},
|
74 |
+
"_episode_num": 0,
|
75 |
+
"use_sde": false,
|
76 |
+
"sde_sample_freq": -1,
|
77 |
+
"_current_progress_remaining": 0.0,
|
78 |
+
"ep_info_buffer": {
|
79 |
+
":type:": "<class 'collections.deque'>",
|
80 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIZvUOt0OD9L+UhpRSlIwBbJRLMowBdJRHQJY6Z9mYjSp1fZQoaAZoCWgPQwh/pIgMq7j1v5SGlFKUaBVLMmgWR0CWOeqTKT0QdX2UKGgGaAloD0MIgeuKGeGt97+UhpRSlGgVSzJoFkdAljloigTRIHV9lChoBmgJaA9DCLtemiLAqfy/lIaUUpRoFUsyaBZHQJY46D0163R1fZQoaAZoCWgPQwhR2bCmsmjzv5SGlFKUaBVLMmgWR0CWPDeHSF4+dX2UKGgGaAloD0MIF2U2yCRj9L+UhpRSlGgVSzJoFkdAlju6naWX1XV9lChoBmgJaA9DCBBbejTVE/q/lIaUUpRoFUsyaBZHQJY7OQhfShJ1fZQoaAZoCWgPQwgexTnq6Dj3v5SGlFKUaBVLMmgWR0CWOrjFyaNNdX2UKGgGaAloD0MIGOsbmNzo+7+UhpRSlGgVSzJoFkdAlj4Tj/+85HV9lChoBmgJaA9DCN0/FqJDYPi/lIaUUpRoFUsyaBZHQJY9lppN9IB1fZQoaAZoCWgPQwhl4etrXSr2v5SGlFKUaBVLMmgWR0CWPRSIxgy/dX2UKGgGaAloD0MIZTbIJCNn9r+UhpRSlGgVSzJoFkdAljyUgr6LwXV9lChoBmgJaA9DCPVIg9vawva/lIaUUpRoFUsyaBZHQJZABSAH3UR1fZQoaAZoCWgPQwg83A4NixH4v5SGlFKUaBVLMmgWR0CWP4gdwNsndX2UKGgGaAloD0MI56ij42rk9r+UhpRSlGgVSzJoFkdAlj8F45cTrXV9lChoBmgJaA9DCMFz7+GS4/W/lIaUUpRoFUsyaBZHQJY+hdC3PRl1fZQoaAZoCWgPQwjMlqyKcFP1v5SGlFKUaBVLMmgWR0CWQdK8+RozdX2UKGgGaAloD0MI6+Oh725l9r+UhpRSlGgVSzJoFkdAlkFV2JSBLHV9lChoBmgJaA9DCA1Uxr/P+PO/lIaUUpRoFUsyaBZHQJZA0/oq0+l1fZQoaAZoCWgPQwjbb+1ESYj1v5SGlFKUaBVLMmgWR0CWQFP0I1LrdX2UKGgGaAloD0MIQQsJGF1e+b+UhpRSlGgVSzJoFkdAlkO8CxNZeXV9lChoBmgJaA9DCC51kNeDyfe/lIaUUpRoFUsyaBZHQJZDPuogmqp1fZQoaAZoCWgPQwjBrFCk+zn4v5SGlFKUaBVLMmgWR0CWQrzGxUvPdX2UKGgGaAloD0MIMsozL4cd/b+UhpRSlGgVSzJoFkdAlkI8zImw7nV9lChoBmgJaA9DCHbFjPD2IPq/lIaUUpRoFUsyaBZHQJZFh8eCCjF1fZQoaAZoCWgPQwh7Ss6JPfT2v5SGlFKUaBVLMmgWR0CWRQwSJ0nxdX2UKGgGaAloD0MIsBwhA3l287+UhpRSlGgVSzJoFkdAlkSK2OQyRHV9lChoBmgJaA9DCGWqYFRSp/m/lIaUUpRoFUsyaBZHQJZEDIMjNY91fZQoaAZoCWgPQwj51of1Rm34v5SGlFKUaBVLMmgWR0CWR3R4hUzbdX2UKGgGaAloD0MIrcH7qlzo+7+UhpRSlGgVSzJoFkdAlkb3meUY9HV9lChoBmgJaA9DCH79EBssnPi/lIaUUpRoFUsyaBZHQJZGdd+ocaR1fZQoaAZoCWgPQwhIGtzWFl7zv5SGlFKUaBVLMmgWR0CWRfbPyCnQdX2UKGgGaAloD0MI9Bq7RPWW9b+UhpRSlGgVSzJoFkdAlklposZpBXV9lChoBmgJaA9DCHP0+L1N//i/lIaUUpRoFUsyaBZHQJZI7MA3kxR1fZQoaAZoCWgPQwj3x3vVysTzv5SGlFKUaBVLMmgWR0CWSGrVOKwZdX2UKGgGaAloD0MI+wRQjCyZ+r+UhpRSlGgVSzJoFkdAlkfqSHM2WXV9lChoBmgJaA9DCMXHJ2Tn7fa/lIaUUpRoFUsyaBZHQJZLPwx33Yd1fZQoaAZoCWgPQwiXrmAb8WT0v5SGlFKUaBVLMmgWR0CWSsIN3GGVdX2UKGgGaAloD0MI8j/5u3cU+r+UhpRSlGgVSzJoFkdAlkpAgxJumHV9lChoBmgJaA9DCBYTm49rQ/a/lIaUUpRoFUsyaBZHQJZJwW0qpcZ1fZQoaAZoCWgPQwhLdJZZhCL6v5SGlFKUaBVLMmgWR0CWTmJ04iosdX2UKGgGaAloD0MI4PdvXpz497+UhpRSlGgVSzJoFkdAlk3mqHXVb3V9lChoBmgJaA9DCJWAmIQLOfq/lIaUUpRoFUsyaBZHQJZNZd1MdtF1fZQoaAZoCWgPQwj9L9eiBSj3v5SGlFKUaBVLMmgWR0CWTOcriEQHdX2UKGgGaAloD0MI/rloyHjU97+UhpRSlGgVSzJoFkdAllGQaJhvznV9lChoBmgJaA9DCMITev1J/PW/lIaUUpRoFUsyaBZHQJZRFO32EkB1fZQoaAZoCWgPQwgvaYzWUVX0v5SGlFKUaBVLMmgWR0CWUJTXrdFfdX2UKGgGaAloD0MIM8LbgxAQ9r+UhpRSlGgVSzJoFkdAllAXdKujh3V9lChoBmgJaA9DCCxhbYydMPi/lIaUUpRoFUsyaBZHQJZUoqCpWFN1fZQoaAZoCWgPQwgDCB9KtOT1v5SGlFKUaBVLMmgWR0CWVCe6qbSadX2UKGgGaAloD0MI8gwa+ic4+L+UhpRSlGgVSzJoFkdAllOnr2QGOnV9lChoBmgJaA9DCHUF24gnu/u/lIaUUpRoFUsyaBZHQJZTKLpA2Q51fZQoaAZoCWgPQwjY8sr1ttn0v5SGlFKUaBVLMmgWR0CWV8bC79Q5dX2UKGgGaAloD0MIaf8DrFV797+UhpRSlGgVSzJoFkdAlldLbQC0W3V9lChoBmgJaA9DCIDuy5ntKgDAlIaUUpRoFUsyaBZHQJZWy5f+jud1fZQoaAZoCWgPQwhTCOQSR576v5SGlFKUaBVLMmgWR0CWVk5uZThpdX2UKGgGaAloD0MIAYdQpWaP9L+UhpRSlGgVSzJoFkdAllskVzp5eXV9lChoBmgJaA9DCAZLdQEvs/q/lIaUUpRoFUsyaBZHQJZaqM98qnZ1fZQoaAZoCWgPQwigxr35DVP5v5SGlFKUaBVLMmgWR0CWWihCMPz4dX2UKGgGaAloD0MIO1J95xdl9r+UhpRSlGgVSzJoFkdAllmpiNKh+XV9lChoBmgJaA9DCNUFvMywEfq/lIaUUpRoFUsyaBZHQJZeTwgDA8B1fZQoaAZoCWgPQwg+sOO/QND4v5SGlFKUaBVLMmgWR0CWXdQ6ZH/cdX2UKGgGaAloD0MIlpf8T/7u9r+UhpRSlGgVSzJoFkdAll1TwhGH6HV9lChoBmgJaA9DCJo+O+C6IvS/lIaUUpRoFUsyaBZHQJZc1ZHNHH51fZQoaAZoCWgPQwhI/mDguff0v5SGlFKUaBVLMmgWR0CWYaf29L6DdX2UKGgGaAloD0MIInGPpQ9d9b+UhpRSlGgVSzJoFkdAlmEspb2US3V9lChoBmgJaA9DCAItXcE2Yva/lIaUUpRoFUsyaBZHQJZgq9XcQAd1fZQoaAZoCWgPQwikU1c+y3P6v5SGlFKUaBVLMmgWR0CWYC2vStvGdX2UKGgGaAloD0MIjEtV2uIa/b+UhpRSlGgVSzJoFkdAlmPqyKNyYHV9lChoBmgJaA9DCCBB8WPMnfW/lIaUUpRoFUsyaBZHQJZjbcuanaZ1fZQoaAZoCWgPQwgPXru04fD7v5SGlFKUaBVLMmgWR0CWYuuc+aBqdX2UKGgGaAloD0MIMzFdiNXf8r+UhpRSlGgVSzJoFkdAlmJrQTmGNHV9lChoBmgJaA9DCKcExCRcSPa/lIaUUpRoFUsyaBZHQJZlx5Pdl/Z1fZQoaAZoCWgPQwiG4o43+S31v5SGlFKUaBVLMmgWR0CWZUqbBoEkdX2UKGgGaAloD0MIYqHWNO+4+b+UhpRSlGgVSzJoFkdAlmTIWP91l3V9lChoBmgJaA9DCGg9fJkoQve/lIaUUpRoFUsyaBZHQJZkR/LDAJt1fZQoaAZoCWgPQwj93NCUnf75v5SGlFKUaBVLMmgWR0CWZ5JrLyMDdX2UKGgGaAloD0MI2NR5VPzf9b+UhpRSlGgVSzJoFkdAlmcVawD/2nV9lChoBmgJaA9DCFhZ2xSPi/W/lIaUUpRoFUsyaBZHQJZmlGBnSOR1fZQoaAZoCWgPQwi0OGOYE3T3v5SGlFKUaBVLMmgWR0CWZhRmseXBdX2UKGgGaAloD0MIpG38icpG9b+UhpRSlGgVSzJoFkdAlml8jeKsMnV9lChoBmgJaA9DCK29T1WhAfq/lIaUUpRoFUsyaBZHQJZo/238XN11fZQoaAZoCWgPQwj5o6gz91D4v5SGlFKUaBVLMmgWR0CWaH0KZ2IPdX2UKGgGaAloD0MI8PyiBP1F+b+UhpRSlGgVSzJoFkdAlmf9DIBBA3V9lChoBmgJaA9DCDSAt0CC4vi/lIaUUpRoFUsyaBZHQJZrVEd/8VJ1fZQoaAZoCWgPQwiYF2Afnbr5v5SGlFKUaBVLMmgWR0CWateAuqWDdX2UKGgGaAloD0MIhey8jc1O87+UhpRSlGgVSzJoFkdAlmpVchTwUnV9lChoBmgJaA9DCLhc/dgk//a/lIaUUpRoFUsyaBZHQJZp1TdcjaB1fZQoaAZoCWgPQwiatKm6R/b2v5SGlFKUaBVLMmgWR0CWbScXFcY7dX2UKGgGaAloD0MIZ0Rpb/DF/b+UhpRSlGgVSzJoFkdAlmyqK1og3nV9lChoBmgJaA9DCAdF8wAWefi/lIaUUpRoFUsyaBZHQJZsKDZlFtt1fZQoaAZoCWgPQwggJ0wYzcr3v5SGlFKUaBVLMmgWR0CWa6fR/mT1dX2UKGgGaAloD0MIVtRgGoaP+r+UhpRSlGgVSzJoFkdAlm8NbkfcOHV9lChoBmgJaA9DCB8RUyKJXvS/lIaUUpRoFUsyaBZHQJZukKNQ0oB1fZQoaAZoCWgPQwhlcmpnmNr4v5SGlFKUaBVLMmgWR0CWbg7ZFocrdX2UKGgGaAloD0MIKnReY5co+7+UhpRSlGgVSzJoFkdAlm2OuvECNnV9lChoBmgJaA9DCDViZp/HqPa/lIaUUpRoFUsyaBZHQJZw+SMcZLt1fZQoaAZoCWgPQwiYNbHAV/T2v5SGlFKUaBVLMmgWR0CWcH0J4SpSdX2UKGgGaAloD0MIqWvtfapK+L+UhpRSlGgVSzJoFkdAlm/6/VRUFXV9lChoBmgJaA9DCFIQPL69q/i/lIaUUpRoFUsyaBZHQJZvevGIbfh1ZS4="
|
81 |
+
},
|
82 |
+
"ep_success_buffer": {
|
83 |
+
":type:": "<class 'collections.deque'>",
|
84 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
85 |
+
},
|
86 |
+
"_n_updates": 12500,
|
87 |
+
"n_steps": 10,
|
88 |
+
"gamma": 0.99,
|
89 |
+
"gae_lambda": 1.0,
|
90 |
+
"ent_coef": 0.0,
|
91 |
+
"vf_coef": 0.5,
|
92 |
+
"max_grad_norm": 0.5,
|
93 |
+
"normalize_advantage": false
|
94 |
+
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7e41918cb82e202a030c8d92b23d41d8cbd0ab12bbf2e94844da7c58c40886dd
|
3 |
+
size 44734
|
a2c-PandaReachDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:30f93668290c3b730ba902662c172f148c19d5b24177a35cb493221f6dbf295a
|
3 |
+
size 46014
|
a2c-PandaReachDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f2f35224160>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f2f3521c780>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 500000, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1676159583829078106, "learning_rate": 0.0002, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/Kjbi6xxDLYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAvSi/PrY+/7sQWxk/vSi/PrY+/7sQWxk/vSi/PrY+/7sQWxk/vSi/PrY+/7sQWxk/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA5z2AP1PVKL/GTta/NGZjPx5f0z4MrMM/mIexPxIlgz/v058/3xBmP2kztj/4aqQ/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAC9KL8+tj7/uxBbGT9yCKo5zPR4uoIKlDy9KL8+tj7/uxBbGT9yCKo5zPR4uoIKlDy9KL8+tj7/uxBbGT9yCKo5zPR4uoIKlDy9KL8+tj7/uxBbGT9yCKo5zPR4uoIKlDyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.37335768 -0.00778946 0.59904575]\n [ 0.37335768 -0.00778946 0.59904575]\n [ 0.37335768 -0.00778946 0.59904575]\n [ 0.37335768 -0.00778946 0.59904575]]", "desired_goal": "[[ 1.0018891 -0.65950507 -1.674279 ]\n [ 0.88827825 0.41283506 1.528688 ]\n [ 1.3869505 1.0245688 1.2486552 ]\n [ 0.89869493 1.4234439 1.2845144 ]]", "observation": "[[ 3.7335768e-01 -7.7894581e-03 5.9904575e-01 3.2431219e-04\n -9.4969268e-04 1.8071417e-02]\n [ 3.7335768e-01 -7.7894581e-03 5.9904575e-01 3.2431219e-04\n -9.4969268e-04 1.8071417e-02]\n [ 3.7335768e-01 -7.7894581e-03 5.9904575e-01 3.2431219e-04\n -9.4969268e-04 1.8071417e-02]\n [ 3.7335768e-01 -7.7894581e-03 5.9904575e-01 3.2431219e-04\n -9.4969268e-04 1.8071417e-02]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAwhsOPtGSmr1Lo/Q9J78TPjbZiL0v4Fc9RoMCvTWj073dg/E9+huBve2AiD2LppY+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.13877776 -0.07547534 0.11945208]\n [ 0.14428388 -0.06682055 0.05270403]\n [-0.03186347 -0.10333864 0.11792729]\n [-0.06304164 0.06665216 0.29423937]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIZvUOt0OD9L+UhpRSlIwBbJRLMowBdJRHQJY6Z9mYjSp1fZQoaAZoCWgPQwh/pIgMq7j1v5SGlFKUaBVLMmgWR0CWOeqTKT0QdX2UKGgGaAloD0MIgeuKGeGt97+UhpRSlGgVSzJoFkdAljloigTRIHV9lChoBmgJaA9DCLtemiLAqfy/lIaUUpRoFUsyaBZHQJY46D0163R1fZQoaAZoCWgPQwhR2bCmsmjzv5SGlFKUaBVLMmgWR0CWPDeHSF4+dX2UKGgGaAloD0MIF2U2yCRj9L+UhpRSlGgVSzJoFkdAlju6naWX1XV9lChoBmgJaA9DCBBbejTVE/q/lIaUUpRoFUsyaBZHQJY7OQhfShJ1fZQoaAZoCWgPQwgexTnq6Dj3v5SGlFKUaBVLMmgWR0CWOrjFyaNNdX2UKGgGaAloD0MIGOsbmNzo+7+UhpRSlGgVSzJoFkdAlj4Tj/+85HV9lChoBmgJaA9DCN0/FqJDYPi/lIaUUpRoFUsyaBZHQJY9lppN9IB1fZQoaAZoCWgPQwhl4etrXSr2v5SGlFKUaBVLMmgWR0CWPRSIxgy/dX2UKGgGaAloD0MIZTbIJCNn9r+UhpRSlGgVSzJoFkdAljyUgr6LwXV9lChoBmgJaA9DCPVIg9vawva/lIaUUpRoFUsyaBZHQJZABSAH3UR1fZQoaAZoCWgPQwg83A4NixH4v5SGlFKUaBVLMmgWR0CWP4gdwNsndX2UKGgGaAloD0MI56ij42rk9r+UhpRSlGgVSzJoFkdAlj8F45cTrXV9lChoBmgJaA9DCMFz7+GS4/W/lIaUUpRoFUsyaBZHQJY+hdC3PRl1fZQoaAZoCWgPQwjMlqyKcFP1v5SGlFKUaBVLMmgWR0CWQdK8+RozdX2UKGgGaAloD0MI6+Oh725l9r+UhpRSlGgVSzJoFkdAlkFV2JSBLHV9lChoBmgJaA9DCA1Uxr/P+PO/lIaUUpRoFUsyaBZHQJZA0/oq0+l1fZQoaAZoCWgPQwjbb+1ESYj1v5SGlFKUaBVLMmgWR0CWQFP0I1LrdX2UKGgGaAloD0MIQQsJGF1e+b+UhpRSlGgVSzJoFkdAlkO8CxNZeXV9lChoBmgJaA9DCC51kNeDyfe/lIaUUpRoFUsyaBZHQJZDPuogmqp1fZQoaAZoCWgPQwjBrFCk+zn4v5SGlFKUaBVLMmgWR0CWQrzGxUvPdX2UKGgGaAloD0MIMsozL4cd/b+UhpRSlGgVSzJoFkdAlkI8zImw7nV9lChoBmgJaA9DCHbFjPD2IPq/lIaUUpRoFUsyaBZHQJZFh8eCCjF1fZQoaAZoCWgPQwh7Ss6JPfT2v5SGlFKUaBVLMmgWR0CWRQwSJ0nxdX2UKGgGaAloD0MIsBwhA3l287+UhpRSlGgVSzJoFkdAlkSK2OQyRHV9lChoBmgJaA9DCGWqYFRSp/m/lIaUUpRoFUsyaBZHQJZEDIMjNY91fZQoaAZoCWgPQwj51of1Rm34v5SGlFKUaBVLMmgWR0CWR3R4hUzbdX2UKGgGaAloD0MIrcH7qlzo+7+UhpRSlGgVSzJoFkdAlkb3meUY9HV9lChoBmgJaA9DCH79EBssnPi/lIaUUpRoFUsyaBZHQJZGdd+ocaR1fZQoaAZoCWgPQwhIGtzWFl7zv5SGlFKUaBVLMmgWR0CWRfbPyCnQdX2UKGgGaAloD0MI9Bq7RPWW9b+UhpRSlGgVSzJoFkdAlklposZpBXV9lChoBmgJaA9DCHP0+L1N//i/lIaUUpRoFUsyaBZHQJZI7MA3kxR1fZQoaAZoCWgPQwj3x3vVysTzv5SGlFKUaBVLMmgWR0CWSGrVOKwZdX2UKGgGaAloD0MI+wRQjCyZ+r+UhpRSlGgVSzJoFkdAlkfqSHM2WXV9lChoBmgJaA9DCMXHJ2Tn7fa/lIaUUpRoFUsyaBZHQJZLPwx33Yd1fZQoaAZoCWgPQwiXrmAb8WT0v5SGlFKUaBVLMmgWR0CWSsIN3GGVdX2UKGgGaAloD0MI8j/5u3cU+r+UhpRSlGgVSzJoFkdAlkpAgxJumHV9lChoBmgJaA9DCBYTm49rQ/a/lIaUUpRoFUsyaBZHQJZJwW0qpcZ1fZQoaAZoCWgPQwhLdJZZhCL6v5SGlFKUaBVLMmgWR0CWTmJ04iosdX2UKGgGaAloD0MI4PdvXpz497+UhpRSlGgVSzJoFkdAlk3mqHXVb3V9lChoBmgJaA9DCJWAmIQLOfq/lIaUUpRoFUsyaBZHQJZNZd1MdtF1fZQoaAZoCWgPQwj9L9eiBSj3v5SGlFKUaBVLMmgWR0CWTOcriEQHdX2UKGgGaAloD0MI/rloyHjU97+UhpRSlGgVSzJoFkdAllGQaJhvznV9lChoBmgJaA9DCMITev1J/PW/lIaUUpRoFUsyaBZHQJZRFO32EkB1fZQoaAZoCWgPQwgvaYzWUVX0v5SGlFKUaBVLMmgWR0CWUJTXrdFfdX2UKGgGaAloD0MIM8LbgxAQ9r+UhpRSlGgVSzJoFkdAllAXdKujh3V9lChoBmgJaA9DCCxhbYydMPi/lIaUUpRoFUsyaBZHQJZUoqCpWFN1fZQoaAZoCWgPQwgDCB9KtOT1v5SGlFKUaBVLMmgWR0CWVCe6qbSadX2UKGgGaAloD0MI8gwa+ic4+L+UhpRSlGgVSzJoFkdAllOnr2QGOnV9lChoBmgJaA9DCHUF24gnu/u/lIaUUpRoFUsyaBZHQJZTKLpA2Q51fZQoaAZoCWgPQwjY8sr1ttn0v5SGlFKUaBVLMmgWR0CWV8bC79Q5dX2UKGgGaAloD0MIaf8DrFV797+UhpRSlGgVSzJoFkdAlldLbQC0W3V9lChoBmgJaA9DCIDuy5ntKgDAlIaUUpRoFUsyaBZHQJZWy5f+jud1fZQoaAZoCWgPQwhTCOQSR576v5SGlFKUaBVLMmgWR0CWVk5uZThpdX2UKGgGaAloD0MIAYdQpWaP9L+UhpRSlGgVSzJoFkdAllskVzp5eXV9lChoBmgJaA9DCAZLdQEvs/q/lIaUUpRoFUsyaBZHQJZaqM98qnZ1fZQoaAZoCWgPQwigxr35DVP5v5SGlFKUaBVLMmgWR0CWWihCMPz4dX2UKGgGaAloD0MIO1J95xdl9r+UhpRSlGgVSzJoFkdAllmpiNKh+XV9lChoBmgJaA9DCNUFvMywEfq/lIaUUpRoFUsyaBZHQJZeTwgDA8B1fZQoaAZoCWgPQwg+sOO/QND4v5SGlFKUaBVLMmgWR0CWXdQ6ZH/cdX2UKGgGaAloD0MIlpf8T/7u9r+UhpRSlGgVSzJoFkdAll1TwhGH6HV9lChoBmgJaA9DCJo+O+C6IvS/lIaUUpRoFUsyaBZHQJZc1ZHNHH51fZQoaAZoCWgPQwhI/mDguff0v5SGlFKUaBVLMmgWR0CWYaf29L6DdX2UKGgGaAloD0MIInGPpQ9d9b+UhpRSlGgVSzJoFkdAlmEspb2US3V9lChoBmgJaA9DCAItXcE2Yva/lIaUUpRoFUsyaBZHQJZgq9XcQAd1fZQoaAZoCWgPQwikU1c+y3P6v5SGlFKUaBVLMmgWR0CWYC2vStvGdX2UKGgGaAloD0MIjEtV2uIa/b+UhpRSlGgVSzJoFkdAlmPqyKNyYHV9lChoBmgJaA9DCCBB8WPMnfW/lIaUUpRoFUsyaBZHQJZjbcuanaZ1fZQoaAZoCWgPQwgPXru04fD7v5SGlFKUaBVLMmgWR0CWYuuc+aBqdX2UKGgGaAloD0MIMzFdiNXf8r+UhpRSlGgVSzJoFkdAlmJrQTmGNHV9lChoBmgJaA9DCKcExCRcSPa/lIaUUpRoFUsyaBZHQJZlx5Pdl/Z1fZQoaAZoCWgPQwiG4o43+S31v5SGlFKUaBVLMmgWR0CWZUqbBoEkdX2UKGgGaAloD0MIYqHWNO+4+b+UhpRSlGgVSzJoFkdAlmTIWP91l3V9lChoBmgJaA9DCGg9fJkoQve/lIaUUpRoFUsyaBZHQJZkR/LDAJt1fZQoaAZoCWgPQwj93NCUnf75v5SGlFKUaBVLMmgWR0CWZ5JrLyMDdX2UKGgGaAloD0MI2NR5VPzf9b+UhpRSlGgVSzJoFkdAlmcVawD/2nV9lChoBmgJaA9DCFhZ2xSPi/W/lIaUUpRoFUsyaBZHQJZmlGBnSOR1fZQoaAZoCWgPQwi0OGOYE3T3v5SGlFKUaBVLMmgWR0CWZhRmseXBdX2UKGgGaAloD0MIpG38icpG9b+UhpRSlGgVSzJoFkdAlml8jeKsMnV9lChoBmgJaA9DCK29T1WhAfq/lIaUUpRoFUsyaBZHQJZo/238XN11fZQoaAZoCWgPQwj5o6gz91D4v5SGlFKUaBVLMmgWR0CWaH0KZ2IPdX2UKGgGaAloD0MI8PyiBP1F+b+UhpRSlGgVSzJoFkdAlmf9DIBBA3V9lChoBmgJaA9DCDSAt0CC4vi/lIaUUpRoFUsyaBZHQJZrVEd/8VJ1fZQoaAZoCWgPQwiYF2Afnbr5v5SGlFKUaBVLMmgWR0CWateAuqWDdX2UKGgGaAloD0MIhey8jc1O87+UhpRSlGgVSzJoFkdAlmpVchTwUnV9lChoBmgJaA9DCLhc/dgk//a/lIaUUpRoFUsyaBZHQJZp1TdcjaB1fZQoaAZoCWgPQwiatKm6R/b2v5SGlFKUaBVLMmgWR0CWbScXFcY7dX2UKGgGaAloD0MIZ0Rpb/DF/b+UhpRSlGgVSzJoFkdAlmyqK1og3nV9lChoBmgJaA9DCAdF8wAWefi/lIaUUpRoFUsyaBZHQJZsKDZlFtt1fZQoaAZoCWgPQwggJ0wYzcr3v5SGlFKUaBVLMmgWR0CWa6fR/mT1dX2UKGgGaAloD0MIVtRgGoaP+r+UhpRSlGgVSzJoFkdAlm8NbkfcOHV9lChoBmgJaA9DCB8RUyKJXvS/lIaUUpRoFUsyaBZHQJZukKNQ0oB1fZQoaAZoCWgPQwhlcmpnmNr4v5SGlFKUaBVLMmgWR0CWbg7ZFocrdX2UKGgGaAloD0MIKnReY5co+7+UhpRSlGgVSzJoFkdAlm2OuvECNnV9lChoBmgJaA9DCDViZp/HqPa/lIaUUpRoFUsyaBZHQJZw+SMcZLt1fZQoaAZoCWgPQwiYNbHAV/T2v5SGlFKUaBVLMmgWR0CWcH0J4SpSdX2UKGgGaAloD0MIqWvtfapK+L+UhpRSlGgVSzJoFkdAlm/6/VRUFXV9lChoBmgJaA9DCFIQPL69q/i/lIaUUpRoFUsyaBZHQJZvevGIbfh1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 12500, "n_steps": 10, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (777 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -1.1247941021574661, "std_reward": 0.11852373209584698, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-12T00:17:04.921960"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8ffd7c7f7c964de35192b2ffdaa40bac8f58189b07f95d95051e3e55bf8ebd07
|
3 |
+
size 3056
|