File size: 1,731 Bytes
03d5cd0
 
 
 
 
dc0ae9f
 
03d5cd0
 
 
 
 
 
 
 
 
 
 
 
 
dc0ae9f
03d5cd0
552acb9
 
03d5cd0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aee3386
03d5cd0
 
 
 
 
 
 
 
 
552acb9
 
 
 
 
 
 
03d5cd0
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
---
library_name: transformers
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
- image-classification
- vision
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: vit-cifar100-cifar100
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# vit-cifar100-cifar100

This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the cifar100 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2851
- Accuracy: 0.9252

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 1337
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5.0

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 1.0634        | 1.0   | 5313  | 0.7235          | 0.8777   |
| 0.7839        | 2.0   | 10626 | 0.3731          | 0.9056   |
| 0.5749        | 3.0   | 15939 | 0.3214          | 0.9153   |
| 0.3432        | 4.0   | 21252 | 0.2990          | 0.9209   |
| 0.4763        | 5.0   | 26565 | 0.2851          | 0.9252   |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.0.1+cu117
- Datasets 3.0.0
- Tokenizers 0.19.1