Model save
Browse files
README.md
CHANGED
@@ -1,13 +1,11 @@
|
|
1 |
---
|
2 |
-
library_name: transformers
|
3 |
-
license: apache-2.0
|
4 |
base_model: google/vit-base-patch16-224-in21k
|
5 |
-
|
6 |
-
|
7 |
-
- vision
|
8 |
-
- generated_from_trainer
|
9 |
metrics:
|
10 |
- accuracy
|
|
|
|
|
11 |
model-index:
|
12 |
- name: vit-cifar100-cifar100
|
13 |
results: []
|
@@ -18,10 +16,10 @@ should probably proofread and complete it, then remove this comment. -->
|
|
18 |
|
19 |
# vit-cifar100-cifar100
|
20 |
|
21 |
-
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on
|
22 |
It achieves the following results on the evaluation set:
|
23 |
-
- Loss: 0.
|
24 |
-
- Accuracy: 0.
|
25 |
|
26 |
## Model description
|
27 |
|
@@ -40,7 +38,7 @@ More information needed
|
|
40 |
### Training hyperparameters
|
41 |
|
42 |
The following hyperparameters were used during training:
|
43 |
-
- learning_rate:
|
44 |
- train_batch_size: 8
|
45 |
- eval_batch_size: 8
|
46 |
- seed: 1337
|
@@ -52,16 +50,17 @@ The following hyperparameters were used during training:
|
|
52 |
|
53 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
54 |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
|
55 |
-
|
|
56 |
-
| 0.
|
57 |
-
| 0.
|
58 |
-
| 0.
|
59 |
-
| 0.
|
60 |
|
61 |
|
62 |
### Framework versions
|
63 |
|
|
|
64 |
- Transformers 4.44.2
|
65 |
- Pytorch 2.0.1+cu117
|
66 |
- Datasets 3.0.0
|
67 |
-
- Tokenizers 0.19.1
|
|
|
1 |
---
|
|
|
|
|
2 |
base_model: google/vit-base-patch16-224-in21k
|
3 |
+
library_name: peft
|
4 |
+
license: apache-2.0
|
|
|
|
|
5 |
metrics:
|
6 |
- accuracy
|
7 |
+
tags:
|
8 |
+
- generated_from_trainer
|
9 |
model-index:
|
10 |
- name: vit-cifar100-cifar100
|
11 |
results: []
|
|
|
16 |
|
17 |
# vit-cifar100-cifar100
|
18 |
|
19 |
+
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset.
|
20 |
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 0.2550
|
22 |
+
- Accuracy: 0.9236
|
23 |
|
24 |
## Model description
|
25 |
|
|
|
38 |
### Training hyperparameters
|
39 |
|
40 |
The following hyperparameters were used during training:
|
41 |
+
- learning_rate: 0.0005
|
42 |
- train_batch_size: 8
|
43 |
- eval_batch_size: 8
|
44 |
- seed: 1337
|
|
|
50 |
|
51 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
52 |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
|
53 |
+
| 0.5206 | 1.0 | 5313 | 0.3323 | 0.9051 |
|
54 |
+
| 0.7608 | 2.0 | 10626 | 0.2929 | 0.9139 |
|
55 |
+
| 0.8691 | 3.0 | 15939 | 0.2725 | 0.9173 |
|
56 |
+
| 0.3582 | 4.0 | 21252 | 0.2581 | 0.9232 |
|
57 |
+
| 0.4711 | 5.0 | 26565 | 0.2550 | 0.9236 |
|
58 |
|
59 |
|
60 |
### Framework versions
|
61 |
|
62 |
+
- PEFT 0.12.0
|
63 |
- Transformers 4.44.2
|
64 |
- Pytorch 2.0.1+cu117
|
65 |
- Datasets 3.0.0
|
66 |
+
- Tokenizers 0.19.1
|