--- library_name: transformers license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - image-classification - vision - generated_from_trainer metrics: - accuracy model-index: - name: vit-cifar100-cifar100 results: [] --- # vit-cifar100-cifar100 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the cifar100 dataset. It achieves the following results on the evaluation set: - Loss: 0.2955 - Accuracy: 0.9241 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 1337 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Accuracy | Validation Loss | |:-------------:|:-----:|:-----:|:--------:|:---------------:| | 1.4469 | 1.0 | 5313 | 0.8716 | 1.1871 | | 0.7861 | 2.0 | 10626 | 0.9056 | 0.4685 | | 0.732 | 3.0 | 15939 | 0.9139 | 0.3551 | | 0.3327 | 4.0 | 21252 | 0.9199 | 0.3090 | | 0.4886 | 5.0 | 26565 | 0.9241 | 0.2955 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.0.1+cu117 - Datasets 3.0.0 - Tokenizers 0.19.1