Model save
Browse files- README.md +61 -0
- all_results.json +7 -0
- train_results.json +7 -0
- trainer_state.json +110 -0
README.md
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
library_name: peft
|
4 |
+
tags:
|
5 |
+
- trl
|
6 |
+
- sft
|
7 |
+
- generated_from_trainer
|
8 |
+
datasets:
|
9 |
+
- generator
|
10 |
+
base_model: microsoft/phi-2
|
11 |
+
model-index:
|
12 |
+
- name: phi-2-disticoder-v0.1
|
13 |
+
results: []
|
14 |
+
---
|
15 |
+
|
16 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
17 |
+
should probably proofread and complete it, then remove this comment. -->
|
18 |
+
|
19 |
+
# phi-2-disticoder-v0.1
|
20 |
+
|
21 |
+
This model is a fine-tuned version of [microsoft/phi-2](https://huggingface.co/microsoft/phi-2) on the generator dataset.
|
22 |
+
|
23 |
+
## Model description
|
24 |
+
|
25 |
+
More information needed
|
26 |
+
|
27 |
+
## Intended uses & limitations
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Training and evaluation data
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training procedure
|
36 |
+
|
37 |
+
### Training hyperparameters
|
38 |
+
|
39 |
+
The following hyperparameters were used during training:
|
40 |
+
- learning_rate: 2.5e-05
|
41 |
+
- train_batch_size: 8
|
42 |
+
- eval_batch_size: 8
|
43 |
+
- seed: 42
|
44 |
+
- gradient_accumulation_steps: 4
|
45 |
+
- total_train_batch_size: 32
|
46 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
47 |
+
- lr_scheduler_type: cosine
|
48 |
+
- lr_scheduler_warmup_ratio: 0.1
|
49 |
+
- training_steps: 100
|
50 |
+
|
51 |
+
### Training results
|
52 |
+
|
53 |
+
|
54 |
+
|
55 |
+
### Framework versions
|
56 |
+
|
57 |
+
- PEFT 0.8.2
|
58 |
+
- Transformers 4.37.2
|
59 |
+
- Pytorch 2.1.1+cu121
|
60 |
+
- Datasets 2.16.1
|
61 |
+
- Tokenizers 0.15.1
|
all_results.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 1.84,
|
3 |
+
"train_loss": 0.901345341205597,
|
4 |
+
"train_runtime": 5180.5926,
|
5 |
+
"train_samples_per_second": 0.618,
|
6 |
+
"train_steps_per_second": 0.019
|
7 |
+
}
|
train_results.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 1.84,
|
3 |
+
"train_loss": 0.901345341205597,
|
4 |
+
"train_runtime": 5180.5926,
|
5 |
+
"train_samples_per_second": 0.618,
|
6 |
+
"train_steps_per_second": 0.019
|
7 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 1.8433179723502304,
|
5 |
+
"eval_steps": 50,
|
6 |
+
"global_step": 100,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.02,
|
13 |
+
"learning_rate": 2.5e-06,
|
14 |
+
"loss": 0.8914,
|
15 |
+
"step": 1
|
16 |
+
},
|
17 |
+
{
|
18 |
+
"epoch": 0.18,
|
19 |
+
"learning_rate": 2.5e-05,
|
20 |
+
"loss": 0.9438,
|
21 |
+
"step": 10
|
22 |
+
},
|
23 |
+
{
|
24 |
+
"epoch": 0.37,
|
25 |
+
"learning_rate": 2.4246157759823855e-05,
|
26 |
+
"loss": 0.9396,
|
27 |
+
"step": 20
|
28 |
+
},
|
29 |
+
{
|
30 |
+
"epoch": 0.55,
|
31 |
+
"learning_rate": 2.2075555538987227e-05,
|
32 |
+
"loss": 0.9303,
|
33 |
+
"step": 30
|
34 |
+
},
|
35 |
+
{
|
36 |
+
"epoch": 0.74,
|
37 |
+
"learning_rate": 1.8750000000000002e-05,
|
38 |
+
"loss": 0.9161,
|
39 |
+
"step": 40
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 0.92,
|
43 |
+
"learning_rate": 1.4670602220836633e-05,
|
44 |
+
"loss": 0.8964,
|
45 |
+
"step": 50
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"epoch": 0.92,
|
49 |
+
"eval_runtime": 88.7397,
|
50 |
+
"eval_samples_per_second": 2.152,
|
51 |
+
"eval_steps_per_second": 0.27,
|
52 |
+
"step": 50
|
53 |
+
},
|
54 |
+
{
|
55 |
+
"epoch": 1.11,
|
56 |
+
"learning_rate": 1.0329397779163372e-05,
|
57 |
+
"loss": 0.8927,
|
58 |
+
"step": 60
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"epoch": 1.29,
|
62 |
+
"learning_rate": 6.250000000000003e-06,
|
63 |
+
"loss": 0.8824,
|
64 |
+
"step": 70
|
65 |
+
},
|
66 |
+
{
|
67 |
+
"epoch": 1.47,
|
68 |
+
"learning_rate": 2.9244444610127764e-06,
|
69 |
+
"loss": 0.871,
|
70 |
+
"step": 80
|
71 |
+
},
|
72 |
+
{
|
73 |
+
"epoch": 1.66,
|
74 |
+
"learning_rate": 7.538422401761461e-07,
|
75 |
+
"loss": 0.8656,
|
76 |
+
"step": 90
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"epoch": 1.84,
|
80 |
+
"learning_rate": 0.0,
|
81 |
+
"loss": 0.8807,
|
82 |
+
"step": 100
|
83 |
+
},
|
84 |
+
{
|
85 |
+
"epoch": 1.84,
|
86 |
+
"eval_runtime": 88.6458,
|
87 |
+
"eval_samples_per_second": 2.155,
|
88 |
+
"eval_steps_per_second": 0.271,
|
89 |
+
"step": 100
|
90 |
+
},
|
91 |
+
{
|
92 |
+
"epoch": 1.84,
|
93 |
+
"step": 100,
|
94 |
+
"total_flos": 1.0437779703988224e+17,
|
95 |
+
"train_loss": 0.901345341205597,
|
96 |
+
"train_runtime": 5180.5926,
|
97 |
+
"train_samples_per_second": 0.618,
|
98 |
+
"train_steps_per_second": 0.019
|
99 |
+
}
|
100 |
+
],
|
101 |
+
"logging_steps": 10,
|
102 |
+
"max_steps": 100,
|
103 |
+
"num_input_tokens_seen": 0,
|
104 |
+
"num_train_epochs": 2,
|
105 |
+
"save_steps": 100,
|
106 |
+
"total_flos": 1.0437779703988224e+17,
|
107 |
+
"train_batch_size": 8,
|
108 |
+
"trial_name": null,
|
109 |
+
"trial_params": null
|
110 |
+
}
|