plaguss HF staff commited on
Commit
d0c1d44
1 Parent(s): fd4f4e9

Model save

Browse files
Files changed (4) hide show
  1. README.md +61 -0
  2. all_results.json +7 -0
  3. train_results.json +7 -0
  4. trainer_state.json +110 -0
README.md ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ library_name: peft
4
+ tags:
5
+ - trl
6
+ - sft
7
+ - generated_from_trainer
8
+ datasets:
9
+ - generator
10
+ base_model: microsoft/phi-2
11
+ model-index:
12
+ - name: phi-2-disticoder-v0.1
13
+ results: []
14
+ ---
15
+
16
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
+ should probably proofread and complete it, then remove this comment. -->
18
+
19
+ # phi-2-disticoder-v0.1
20
+
21
+ This model is a fine-tuned version of [microsoft/phi-2](https://huggingface.co/microsoft/phi-2) on the generator dataset.
22
+
23
+ ## Model description
24
+
25
+ More information needed
26
+
27
+ ## Intended uses & limitations
28
+
29
+ More information needed
30
+
31
+ ## Training and evaluation data
32
+
33
+ More information needed
34
+
35
+ ## Training procedure
36
+
37
+ ### Training hyperparameters
38
+
39
+ The following hyperparameters were used during training:
40
+ - learning_rate: 2.5e-05
41
+ - train_batch_size: 8
42
+ - eval_batch_size: 8
43
+ - seed: 42
44
+ - gradient_accumulation_steps: 4
45
+ - total_train_batch_size: 32
46
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
47
+ - lr_scheduler_type: cosine
48
+ - lr_scheduler_warmup_ratio: 0.1
49
+ - training_steps: 100
50
+
51
+ ### Training results
52
+
53
+
54
+
55
+ ### Framework versions
56
+
57
+ - PEFT 0.8.2
58
+ - Transformers 4.37.2
59
+ - Pytorch 2.1.1+cu121
60
+ - Datasets 2.16.1
61
+ - Tokenizers 0.15.1
all_results.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 1.84,
3
+ "train_loss": 0.901345341205597,
4
+ "train_runtime": 5180.5926,
5
+ "train_samples_per_second": 0.618,
6
+ "train_steps_per_second": 0.019
7
+ }
train_results.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 1.84,
3
+ "train_loss": 0.901345341205597,
4
+ "train_runtime": 5180.5926,
5
+ "train_samples_per_second": 0.618,
6
+ "train_steps_per_second": 0.019
7
+ }
trainer_state.json ADDED
@@ -0,0 +1,110 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.8433179723502304,
5
+ "eval_steps": 50,
6
+ "global_step": 100,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.02,
13
+ "learning_rate": 2.5e-06,
14
+ "loss": 0.8914,
15
+ "step": 1
16
+ },
17
+ {
18
+ "epoch": 0.18,
19
+ "learning_rate": 2.5e-05,
20
+ "loss": 0.9438,
21
+ "step": 10
22
+ },
23
+ {
24
+ "epoch": 0.37,
25
+ "learning_rate": 2.4246157759823855e-05,
26
+ "loss": 0.9396,
27
+ "step": 20
28
+ },
29
+ {
30
+ "epoch": 0.55,
31
+ "learning_rate": 2.2075555538987227e-05,
32
+ "loss": 0.9303,
33
+ "step": 30
34
+ },
35
+ {
36
+ "epoch": 0.74,
37
+ "learning_rate": 1.8750000000000002e-05,
38
+ "loss": 0.9161,
39
+ "step": 40
40
+ },
41
+ {
42
+ "epoch": 0.92,
43
+ "learning_rate": 1.4670602220836633e-05,
44
+ "loss": 0.8964,
45
+ "step": 50
46
+ },
47
+ {
48
+ "epoch": 0.92,
49
+ "eval_runtime": 88.7397,
50
+ "eval_samples_per_second": 2.152,
51
+ "eval_steps_per_second": 0.27,
52
+ "step": 50
53
+ },
54
+ {
55
+ "epoch": 1.11,
56
+ "learning_rate": 1.0329397779163372e-05,
57
+ "loss": 0.8927,
58
+ "step": 60
59
+ },
60
+ {
61
+ "epoch": 1.29,
62
+ "learning_rate": 6.250000000000003e-06,
63
+ "loss": 0.8824,
64
+ "step": 70
65
+ },
66
+ {
67
+ "epoch": 1.47,
68
+ "learning_rate": 2.9244444610127764e-06,
69
+ "loss": 0.871,
70
+ "step": 80
71
+ },
72
+ {
73
+ "epoch": 1.66,
74
+ "learning_rate": 7.538422401761461e-07,
75
+ "loss": 0.8656,
76
+ "step": 90
77
+ },
78
+ {
79
+ "epoch": 1.84,
80
+ "learning_rate": 0.0,
81
+ "loss": 0.8807,
82
+ "step": 100
83
+ },
84
+ {
85
+ "epoch": 1.84,
86
+ "eval_runtime": 88.6458,
87
+ "eval_samples_per_second": 2.155,
88
+ "eval_steps_per_second": 0.271,
89
+ "step": 100
90
+ },
91
+ {
92
+ "epoch": 1.84,
93
+ "step": 100,
94
+ "total_flos": 1.0437779703988224e+17,
95
+ "train_loss": 0.901345341205597,
96
+ "train_runtime": 5180.5926,
97
+ "train_samples_per_second": 0.618,
98
+ "train_steps_per_second": 0.019
99
+ }
100
+ ],
101
+ "logging_steps": 10,
102
+ "max_steps": 100,
103
+ "num_input_tokens_seen": 0,
104
+ "num_train_epochs": 2,
105
+ "save_steps": 100,
106
+ "total_flos": 1.0437779703988224e+17,
107
+ "train_batch_size": 8,
108
+ "trial_name": null,
109
+ "trial_params": null
110
+ }