Modelo NLP que clasifica dos oraciones en 'equivalente' o 'no equivalente'
Browse files- README.md +7 -6
- all_results.json +14 -0
- eval_results.json +9 -0
- train_results.json +8 -0
README.md
CHANGED
@@ -2,6 +2,7 @@
|
|
2 |
license: apache-2.0
|
3 |
base_model: distilroberta-base
|
4 |
tags:
|
|
|
5 |
- generated_from_trainer
|
6 |
datasets:
|
7 |
- glue
|
@@ -23,10 +24,10 @@ model-index:
|
|
23 |
metrics:
|
24 |
- name: Accuracy
|
25 |
type: accuracy
|
26 |
-
value: 0.
|
27 |
- name: F1
|
28 |
type: f1
|
29 |
-
value: 0.
|
30 |
---
|
31 |
|
32 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -34,11 +35,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
34 |
|
35 |
# platzi-distilroberta-base-mrpc-glue-joselier
|
36 |
|
37 |
-
This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the glue
|
38 |
It achieves the following results on the evaluation set:
|
39 |
-
- Loss: 0.
|
40 |
-
- Accuracy: 0.
|
41 |
-
- F1: 0.
|
42 |
|
43 |
## Model description
|
44 |
|
|
|
2 |
license: apache-2.0
|
3 |
base_model: distilroberta-base
|
4 |
tags:
|
5 |
+
- text-classification
|
6 |
- generated_from_trainer
|
7 |
datasets:
|
8 |
- glue
|
|
|
24 |
metrics:
|
25 |
- name: Accuracy
|
26 |
type: accuracy
|
27 |
+
value: 0.8137254901960784
|
28 |
- name: F1
|
29 |
type: f1
|
30 |
+
value: 0.8729096989966555
|
31 |
---
|
32 |
|
33 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
35 |
|
36 |
# platzi-distilroberta-base-mrpc-glue-joselier
|
37 |
|
38 |
+
This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the glue and the mrpc datasets.
|
39 |
It achieves the following results on the evaluation set:
|
40 |
+
- Loss: 0.4328
|
41 |
+
- Accuracy: 0.8137
|
42 |
+
- F1: 0.8729
|
43 |
|
44 |
## Model description
|
45 |
|
all_results.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 3.0,
|
3 |
+
"eval_accuracy": 0.8137254901960784,
|
4 |
+
"eval_f1": 0.8729096989966555,
|
5 |
+
"eval_loss": 0.43276065587997437,
|
6 |
+
"eval_runtime": 1.6978,
|
7 |
+
"eval_samples_per_second": 240.31,
|
8 |
+
"eval_steps_per_second": 30.039,
|
9 |
+
"total_flos": 205303769885760.0,
|
10 |
+
"train_loss": 0.40716327786359047,
|
11 |
+
"train_runtime": 130.2399,
|
12 |
+
"train_samples_per_second": 84.49,
|
13 |
+
"train_steps_per_second": 10.573
|
14 |
+
}
|
eval_results.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 3.0,
|
3 |
+
"eval_accuracy": 0.8137254901960784,
|
4 |
+
"eval_f1": 0.8729096989966555,
|
5 |
+
"eval_loss": 0.43276065587997437,
|
6 |
+
"eval_runtime": 1.6978,
|
7 |
+
"eval_samples_per_second": 240.31,
|
8 |
+
"eval_steps_per_second": 30.039
|
9 |
+
}
|
train_results.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 3.0,
|
3 |
+
"total_flos": 205303769885760.0,
|
4 |
+
"train_loss": 0.40716327786359047,
|
5 |
+
"train_runtime": 130.2399,
|
6 |
+
"train_samples_per_second": 84.49,
|
7 |
+
"train_steps_per_second": 10.573
|
8 |
+
}
|