joselier commited on
Commit
b741815
1 Parent(s): 53745a0

Modelo NLP que clasifica dos oraciones en 'equivalente' o 'no equivalente'

Browse files
Files changed (4) hide show
  1. README.md +7 -6
  2. all_results.json +14 -0
  3. eval_results.json +9 -0
  4. train_results.json +8 -0
README.md CHANGED
@@ -2,6 +2,7 @@
2
  license: apache-2.0
3
  base_model: distilroberta-base
4
  tags:
 
5
  - generated_from_trainer
6
  datasets:
7
  - glue
@@ -23,10 +24,10 @@ model-index:
23
  metrics:
24
  - name: Accuracy
25
  type: accuracy
26
- value: 0.8504901960784313
27
  - name: F1
28
  type: f1
29
- value: 0.8904847396768403
30
  ---
31
 
32
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -34,11 +35,11 @@ should probably proofread and complete it, then remove this comment. -->
34
 
35
  # platzi-distilroberta-base-mrpc-glue-joselier
36
 
37
- This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the glue dataset.
38
  It achieves the following results on the evaluation set:
39
- - Loss: 0.5126
40
- - Accuracy: 0.8505
41
- - F1: 0.8905
42
 
43
  ## Model description
44
 
 
2
  license: apache-2.0
3
  base_model: distilroberta-base
4
  tags:
5
+ - text-classification
6
  - generated_from_trainer
7
  datasets:
8
  - glue
 
24
  metrics:
25
  - name: Accuracy
26
  type: accuracy
27
+ value: 0.8137254901960784
28
  - name: F1
29
  type: f1
30
+ value: 0.8729096989966555
31
  ---
32
 
33
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
35
 
36
  # platzi-distilroberta-base-mrpc-glue-joselier
37
 
38
+ This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the glue and the mrpc datasets.
39
  It achieves the following results on the evaluation set:
40
+ - Loss: 0.4328
41
+ - Accuracy: 0.8137
42
+ - F1: 0.8729
43
 
44
  ## Model description
45
 
all_results.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 3.0,
3
+ "eval_accuracy": 0.8137254901960784,
4
+ "eval_f1": 0.8729096989966555,
5
+ "eval_loss": 0.43276065587997437,
6
+ "eval_runtime": 1.6978,
7
+ "eval_samples_per_second": 240.31,
8
+ "eval_steps_per_second": 30.039,
9
+ "total_flos": 205303769885760.0,
10
+ "train_loss": 0.40716327786359047,
11
+ "train_runtime": 130.2399,
12
+ "train_samples_per_second": 84.49,
13
+ "train_steps_per_second": 10.573
14
+ }
eval_results.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 3.0,
3
+ "eval_accuracy": 0.8137254901960784,
4
+ "eval_f1": 0.8729096989966555,
5
+ "eval_loss": 0.43276065587997437,
6
+ "eval_runtime": 1.6978,
7
+ "eval_samples_per_second": 240.31,
8
+ "eval_steps_per_second": 30.039
9
+ }
train_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 3.0,
3
+ "total_flos": 205303769885760.0,
4
+ "train_loss": 0.40716327786359047,
5
+ "train_runtime": 130.2399,
6
+ "train_samples_per_second": 84.49,
7
+ "train_steps_per_second": 10.573
8
+ }