Create audio.py
Browse files
audio.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from io import BytesIO
|
2 |
+
from urllib.request import urlopen
|
3 |
+
import librosa
|
4 |
+
from transformers import Qwen2AudioForConditionalGeneration, AutoProcessor, pipeline
|
5 |
+
import pyttsx3 # For text-to-speech
|
6 |
+
|
7 |
+
# Load Qwen2Audio model and processor
|
8 |
+
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-Audio-7B-Instruct")
|
9 |
+
model = Qwen2AudioForConditionalGeneration.from_pretrained("Qwen/Qwen2-Audio-7B-Instruct", device_map="auto")
|
10 |
+
|
11 |
+
# Initialize TTS engine
|
12 |
+
tts_engine = pyttsx3.init()
|
13 |
+
|
14 |
+
# Sample conversation with audio input
|
15 |
+
conversation = [
|
16 |
+
{"role": "user", "content": [
|
17 |
+
{"type": "audio", "audio_url": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen2-Audio/audio/guess_age_gender.wav"},
|
18 |
+
]},
|
19 |
+
{"role": "assistant", "content": "Yes, the speaker is female and in her twenties."},
|
20 |
+
{"role": "user", "content": [
|
21 |
+
{"type": "audio", "audio_url": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen2-Audio/audio/translate_to_chinese.wav"},
|
22 |
+
]},
|
23 |
+
]
|
24 |
+
|
25 |
+
# Preprocess conversation
|
26 |
+
text = processor.apply_chat_template(conversation, add_generation_prompt=True, tokenize=False)
|
27 |
+
audios = []
|
28 |
+
for message in conversation:
|
29 |
+
if isinstance(message["content"], list):
|
30 |
+
for ele in message["content"]:
|
31 |
+
if ele["type"] == "audio":
|
32 |
+
audios.append(librosa.load(
|
33 |
+
BytesIO(urlopen(ele['audio_url']).read()),
|
34 |
+
sr=processor.feature_extractor.sampling_rate)[0]
|
35 |
+
)
|
36 |
+
|
37 |
+
# Prepare model inputs
|
38 |
+
inputs = processor(text=text, audios=audios, return_tensors="pt", padding=True)
|
39 |
+
inputs.input_ids = inputs.input_ids.to("cuda")
|
40 |
+
|
41 |
+
# Generate response
|
42 |
+
generate_ids = model.generate(**inputs, max_length=256)
|
43 |
+
generate_ids = generate_ids[:, inputs.input_ids.size(1):]
|
44 |
+
|
45 |
+
# Decode response
|
46 |
+
response = processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
47 |
+
print("Model Response:", response)
|
48 |
+
|
49 |
+
# Convert response to speech
|
50 |
+
tts_engine.say(response)
|
51 |
+
tts_engine.runAndWait()
|