File size: 2,404 Bytes
8a2c416 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
---
license: apache-2.0
library_name: peft
tags:
- generated_from_trainer
base_model: mistralai/Mistral-7B-v0.1
model-index:
- name: mistral-journal-finetune
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mistral-journal-finetune
This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.3365
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2.5e-05
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1
- training_steps: 500
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-------:|:----:|:---------------:|
| 1.9309 | 2.0833 | 25 | 1.6414 |
| 0.5146 | 4.1667 | 50 | 1.8892 |
| 0.2481 | 6.25 | 75 | 1.9643 |
| 0.1804 | 8.3333 | 100 | 1.9184 |
| 0.1683 | 10.4167 | 125 | 1.9770 |
| 0.1582 | 12.5 | 150 | 2.1538 |
| 0.1591 | 14.5833 | 175 | 2.1592 |
| 0.1509 | 16.6667 | 200 | 2.1474 |
| 0.1478 | 18.75 | 225 | 2.1839 |
| 0.1465 | 20.8333 | 250 | 2.2255 |
| 0.1465 | 22.9167 | 275 | 2.2356 |
| 0.1427 | 25.0 | 300 | 2.2581 |
| 0.144 | 27.0833 | 325 | 2.2707 |
| 0.139 | 29.1667 | 350 | 2.2694 |
| 0.1437 | 31.25 | 375 | 2.2956 |
| 0.141 | 33.3333 | 400 | 2.3087 |
| 0.1359 | 35.4167 | 425 | 2.3056 |
| 0.1385 | 37.5 | 450 | 2.3213 |
| 0.1363 | 39.5833 | 475 | 2.3332 |
| 0.1359 | 41.6667 | 500 | 2.3365 |
### Framework versions
- PEFT 0.11.1
- Transformers 4.41.1
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1 |