Add basic Lunar Lander agent.
Browse files- README.md +37 -0
- basic_lander.zip +3 -0
- basic_lander/_stable_baselines3_version +1 -0
- basic_lander/data +95 -0
- basic_lander/policy.optimizer.pth +3 -0
- basic_lander/policy.pth +3 -0
- basic_lander/pytorch_variables.pth +3 -0
- basic_lander/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 259.88 +/- 27.80
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
basic_lander.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3d9743472d8b2510657cdf4c0c6142204875681758b392e21fa1be1880ae06b4
|
3 |
+
size 147424
|
basic_lander/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
basic_lander/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f11f4498790>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f11f4498820>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f11f44988b0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f11f4498940>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f11f44989d0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f11f4498a60>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f11f4498af0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f11f4498b80>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f11f4498c10>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f11f4498ca0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f11f4498d30>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f11f4498dc0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7f11f4513810>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"observation_space": {
|
25 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
26 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
27 |
+
"dtype": "float32",
|
28 |
+
"_shape": [
|
29 |
+
8
|
30 |
+
],
|
31 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
32 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
33 |
+
"bounded_below": "[False False False False False False False False]",
|
34 |
+
"bounded_above": "[False False False False False False False False]",
|
35 |
+
"_np_random": null
|
36 |
+
},
|
37 |
+
"action_space": {
|
38 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
39 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
40 |
+
"n": 4,
|
41 |
+
"_shape": [],
|
42 |
+
"dtype": "int64",
|
43 |
+
"_np_random": null
|
44 |
+
},
|
45 |
+
"n_envs": 16,
|
46 |
+
"num_timesteps": 1015808,
|
47 |
+
"_total_timesteps": 1000000,
|
48 |
+
"_num_timesteps_at_start": 0,
|
49 |
+
"seed": null,
|
50 |
+
"action_noise": null,
|
51 |
+
"start_time": 1673821241324008576,
|
52 |
+
"learning_rate": 0.0003,
|
53 |
+
"tensorboard_log": null,
|
54 |
+
"lr_schedule": {
|
55 |
+
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
57 |
+
},
|
58 |
+
"_last_obs": {
|
59 |
+
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADPlZTzUPOs+Sv/UPeHHor78AIc9+gaiPQAAAAAAAAAAulsBviJNnz9aqim+ffKovnU9QL7H4Lk8AAAAAAAAAABN0Ay9w5F5uu6d2bvUfOg33E16OAg+J7cAAIA/AACAP7NCGz04qbo+4jA+PWxZYL5cjU89EEiXvAAAAAAAAAAAmlc+vUgEhj7c8zI+FC6NvhsxrDe7vnO9AAAAAAAAAAAaKz09CvRbu86V9Txfe+s8ObOsPP02xL0AAIA/AACAP7OZOz4GX04/gogmvr5voL4Z/pE7ncz4vQAAAAAAAAAAZrwSPDynJj0yUE08UpOGvuTuV7zpmcQ9AAAAAAAAAADNfiG8wxGSPw9RN71kh7C+jS5mPAvd+roAAAAAAAAAAHO1pj1ByFg+svs4vdbNL76wpKk7+s3tvQAAAAAAAAAAmjjnPK4ZoLpEAZc4SYuGM0iq+Ti+3K23AACAPwAAgD8mbZg9ZQsUPuSzxr2SIT2+eCievcBWQb0AAAAAAAAAALOf+j3Juas+8O7uvUlAj77xe4y8FHqkPQAAAAAAAAAAABg5u+TJqj2s9si8oON0vuTqgboONZM9AAAAAAAAAAC6oWA+L6kdP55Lg775qJi+9JqHvGbn4r0AAAAAAAAAAJoqkD0cWBg/1p7VvQIBmb5liR29nht9vQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
61 |
+
},
|
62 |
+
"_last_episode_starts": {
|
63 |
+
":type:": "<class 'numpy.ndarray'>",
|
64 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
65 |
+
},
|
66 |
+
"_last_original_obs": null,
|
67 |
+
"_episode_num": 0,
|
68 |
+
"use_sde": false,
|
69 |
+
"sde_sample_freq": -1,
|
70 |
+
"_current_progress_remaining": -0.015808000000000044,
|
71 |
+
"ep_info_buffer": {
|
72 |
+
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVgBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIz57L1KQ6bkCUhpRSlIwBbJRNLwGMAXSUR0CUSGr1M/QjdX2UKGgGaAloD0MIcVrwoq9Oc0CUhpRSlGgVTTgBaBZHQJRIzEn9ehR1fZQoaAZoCWgPQwgBwRw9/khuQJSGlFKUaBVNSwFoFkdAlElWE0zj3nV9lChoBmgJaA9DCNI1k2/2I3BAlIaUUpRoFU1BAWgWR0CUXTYAsCkodX2UKGgGaAloD0MIy9b6IuFjcECUhpRSlGgVTTQBaBZHQJRfZxDLKV91fZQoaAZoCWgPQwhbzTrje3dwQJSGlFKUaBVNPwFoFkdAlF91GPPszHV9lChoBmgJaA9DCJTcYROZVnFAlIaUUpRoFU0OAWgWR0CUYQrqdH2AdX2UKGgGaAloD0MIoRSt3AsIXUCUhpRSlGgVTegDaBZHQJRhWeZof0V1fZQoaAZoCWgPQwjJBWfwd7NqQJSGlFKUaBVNRgFoFkdAlGHTjzZpSXV9lChoBmgJaA9DCM9qgT0ml2tAlIaUUpRoFU0sAWgWR0CUYn75Ec81dX2UKGgGaAloD0MIOWItPoWOckCUhpRSlGgVTUEBaBZHQJRiocKgIyF1fZQoaAZoCWgPQwhF9GvrJ69yQJSGlFKUaBVNLgFoFkdAlGLMTBZZCHV9lChoBmgJaA9DCDiCVIqdPXBAlIaUUpRoFU0YAWgWR0CUZgjriVB2dX2UKGgGaAloD0MIKqkT0ATtcUCUhpRSlGgVTTIBaBZHQJRmCn4wh4d1fZQoaAZoCWgPQwgUBmUazblwQJSGlFKUaBVNSAFoFkdAlGb2s3hn8XV9lChoBmgJaA9DCFaCxeGMKXFAlIaUUpRoFU09AWgWR0CUZ7eN1hb4dX2UKGgGaAloD0MI6NzteqlncECUhpRSlGgVTbABaBZHQJRoLuQZGax1fZQoaAZoCWgPQwh5zhYQ2gtyQJSGlFKUaBVNLQFoFkdAlGgrS7Xg+HV9lChoBmgJaA9DCHLFxVF5s3BAlIaUUpRoFU1KAWgWR0CUaL1ivxH5dX2UKGgGaAloD0MIHTnSGdixcECUhpRSlGgVTdEBaBZHQJRpnVbzK9x1fZQoaAZoCWgPQwjt153uPDNuQJSGlFKUaBVNRQFoFkdAlGsRS9/SY3V9lChoBmgJaA9DCATj4NJxWHJAlIaUUpRoFU1OAWgWR0CUa1dlNDc/dX2UKGgGaAloD0MIoIfaNkwzcECUhpRSlGgVTSYBaBZHQJRs5tP557h1fZQoaAZoCWgPQwjAWrVrQgJHQJSGlFKUaBVNHgFoFkdAlGz5rpJPInV9lChoBmgJaA9DCJ0PzxJkWG9AlIaUUpRoFU1bAWgWR0CUbjM2m52AdX2UKGgGaAloD0MIDd5X5YJJckCUhpRSlGgVTXIBaBZHQJRumN1hb4d1fZQoaAZoCWgPQwjKG2DmO2FwQJSGlFKUaBVNjAFoFkdAlG81PSDyv3V9lChoBmgJaA9DCB+fkJ2312xAlIaUUpRoFU1pAWgWR0CUb4ErXlKcdX2UKGgGaAloD0MIC2DKwIEhcECUhpRSlGgVTS8BaBZHQJRwv9Q40dl1fZQoaAZoCWgPQwifrBiujsFxQJSGlFKUaBVNPgFoFkdAlHE5vo/zKHV9lChoBmgJaA9DCHrhzoXR/XFAlIaUUpRoFU0TAWgWR0CUcbRZlnRLdX2UKGgGaAloD0MIoYDtYETwb0CUhpRSlGgVTTkBaBZHQJRy/LwF1Sx1fZQoaAZoCWgPQwiBIECGDoBxQJSGlFKUaBVNXwFoFkdAlHMnCwbEP3V9lChoBmgJaA9DCEurIXEPcnBAlIaUUpRoFU1OAWgWR0CUc1BvrGBGdX2UKGgGaAloD0MI6C0e3jNJcUCUhpRSlGgVTR8BaBZHQJR1BVp9JBh1fZQoaAZoCWgPQwh5kJ4iB2FsQJSGlFKUaBVNTQFoFkdAlHUltfoicHV9lChoBmgJaA9DCBFRTN6AE29AlIaUUpRoFU1tAWgWR0CUdVKWcBludX2UKGgGaAloD0MIt7dbkkPscUCUhpRSlGgVTVwBaBZHQJR3QtjCpFV1fZQoaAZoCWgPQwie0OtPYottQJSGlFKUaBVNIgFoFkdAlHhgG0NSZXV9lChoBmgJaA9DCHZvRWICHHJAlIaUUpRoFU1SAWgWR0CUeICMxXXAdX2UKGgGaAloD0MIoDTUKGQ4cUCUhpRSlGgVTVsBaBZHQJR436VMVUN1fZQoaAZoCWgPQwhFuwopf4NwQJSGlFKUaBVNRgFoFkdAlHpXDvVmSXV9lChoBmgJaA9DCFlpUgr64nFAlIaUUpRoFU1xAWgWR0CUet5Dqnm8dX2UKGgGaAloD0MIXtvbLQnEcUCUhpRSlGgVTSABaBZHQJR7NDx9XtB1fZQoaAZoCWgPQwiM17yqs4hrQJSGlFKUaBVNOgFoFkdAlHuhciW3SnV9lChoBmgJaA9DCJsCmZ1F0VBAlIaUUpRoFU0KAWgWR0CUfLdCE6DHdX2UKGgGaAloD0MIF7ZmK698cECUhpRSlGgVTR4BaBZHQJR9FpM6BAh1fZQoaAZoCWgPQwgawFsgwZVxQJSGlFKUaBVNSwFoFkdAlH1P8yeqaXV9lChoBmgJaA9DCCzxgLKpW29AlIaUUpRoFU05AWgWR0CUfiNqQA+7dX2UKGgGaAloD0MIIOup1VfNckCUhpRSlGgVTbgBaBZHQJR+pm7J4jd1fZQoaAZoCWgPQwh63o0FRRJwQJSGlFKUaBVNEwFoFkdAlH72a6STyXV9lChoBmgJaA9DCJI7bCKz6nFAlIaUUpRoFU0kAWgWR0CUfzD6WPcSdX2UKGgGaAloD0MIBfpEnqSnb0CUhpRSlGgVTTYBaBZHQJR/xNdqtYB1fZQoaAZoCWgPQwi8WYP3FdJxQJSGlFKUaBVNRAFoFkdAlJYmhmGucXV9lChoBmgJaA9DCN/42jPLo21AlIaUUpRoFU04AWgWR0CUl2iBGx2TdX2UKGgGaAloD0MI4gSm07pgcECUhpRSlGgVTVQBaBZHQJSX+LZSNwR1fZQoaAZoCWgPQwivmBHe3ntxQJSGlFKUaBVNiQFoFkdAlJpeCCjDbnV9lChoBmgJaA9DCGwGuCBbpG5AlIaUUpRoFU1MAWgWR0CUmou63AmBdX2UKGgGaAloD0MIQS5x5MF6cECUhpRSlGgVTUEBaBZHQJSa7tpmEoR1fZQoaAZoCWgPQwiSPq2iv3FsQJSGlFKUaBVNOAFoFkdAlJvD8UEgXHV9lChoBmgJaA9DCOYhUz5EkXFAlIaUUpRoFU1mAWgWR0CUm/dsBQvYdX2UKGgGaAloD0MIAwr19JG9cECUhpRSlGgVTTcBaBZHQJScWfYjB2x1fZQoaAZoCWgPQwhnuWx0jttxQJSGlFKUaBVNKQFoFkdAlJy/S2H+InV9lChoBmgJaA9DCKT6zi9Kmm9AlIaUUpRoFU2nAWgWR0CUnWw22oegdX2UKGgGaAloD0MIqKs7FlsAbUCUhpRSlGgVTSwBaBZHQJSdbXPJJXh1fZQoaAZoCWgPQwhlVu9wO79vQJSGlFKUaBVNMAFoFkdAlJ7PD50r9XV9lChoBmgJaA9DCK2KcJNRYnBAlIaUUpRoFU1cAWgWR0CUn4+QlruZdX2UKGgGaAloD0MIm44AblbYcECUhpRSlGgVTWoBaBZHQJSfwHGCI1t1fZQoaAZoCWgPQwiwyoXKv9FwQJSGlFKUaBVNKgFoFkdAlKE5VwPy1HV9lChoBmgJaA9DCHkhHR7CtEtAlIaUUpRoFUvxaBZHQJSkTTkQwsZ1fZQoaAZoCWgPQwgvaverANBtQJSGlFKUaBVNFwFoFkdAlKR9xMnJDHV9lChoBmgJaA9DCEQ2kC72PXFAlIaUUpRoFU1qAWgWR0CUpRWaMJhOdX2UKGgGaAloD0MIgSVXsXibbkCUhpRSlGgVTSIBaBZHQJSliL9/BnB1fZQoaAZoCWgPQwgx68VQjuxxQJSGlFKUaBVNEgFoFkdAlKbcSoOx0XV9lChoBmgJaA9DCEvkgjP4a29AlIaUUpRoFU1NAWgWR0CUpvQ8fV7QdX2UKGgGaAloD0MI9fI7TWYtckCUhpRSlGgVTZoBaBZHQJSnn4ubqhV1fZQoaAZoCWgPQwiKBFPNbN5wQJSGlFKUaBVNPAFoFkdAlKesUM5OrXV9lChoBmgJaA9DCM41zND4s21AlIaUUpRoFU03AWgWR0CUp90Bfa6CdX2UKGgGaAloD0MIw7mGGZr3b0CUhpRSlGgVTSwBaBZHQJSoiXv6TGJ1fZQoaAZoCWgPQwhSZRh3A4FxQJSGlFKUaBVNCAFoFkdAlKjCF9KEnXV9lChoBmgJaA9DCNuHvOXqrG5AlIaUUpRoFU07AWgWR0CUqPegte2NdX2UKGgGaAloD0MIDMufbwvEcECUhpRSlGgVTU8BaBZHQJSr0CfYjB51fZQoaAZoCWgPQwjOF3svvrByQJSGlFKUaBVNXgFoFkdAlKwhJqZc9nV9lChoBmgJaA9DCHAjZYvkwHBAlIaUUpRoFU0eAWgWR0CUrnrqMWGidX2UKGgGaAloD0MIXTEjvL0kb0CUhpRSlGgVTT4BaBZHQJSwsbrC3w11fZQoaAZoCWgPQwhwCisV1MpyQJSGlFKUaBVNowFoFkdAlLD6g2606nV9lChoBmgJaA9DCLd7uU9ODHNAlIaUUpRoFU0sAWgWR0CUsdMhHLA6dX2UKGgGaAloD0MIJ9nqcgpdcECUhpRSlGgVTR4BaBZHQJSyWeVcD8t1fZQoaAZoCWgPQwguWKoLeINxQJSGlFKUaBVNOAFoFkdAlLJwaFVT73V9lChoBmgJaA9DCHAnEeFfWnBAlIaUUpRoFU0dAWgWR0CUsxNjLB9DdX2UKGgGaAloD0MIyuL+I9MbbkCUhpRSlGgVTUEBaBZHQJSzenAIpph1fZQoaAZoCWgPQwje5/ho8RhvQJSGlFKUaBVNlwFoFkdAlLPVwo9cKXV9lChoBmgJaA9DCEflJmpp3W5AlIaUUpRoFU0tAWgWR0CUs+stTUAldX2UKGgGaAloD0MIpg9dUB9qcUCUhpRSlGgVTWsBaBZHQJS03kXDWLB1fZQoaAZoCWgPQwjTpBR0+1djQJSGlFKUaBVN6ANoFkdAlLVfdyksSXV9lChoBmgJaA9DCM+ey9TkKXBAlIaUUpRoFU1bAWgWR0CUtbctXgccdX2UKGgGaAloD0MIyM9GrhuOcUCUhpRSlGgVTcMBaBZHQJS2Ew0wait1fZQoaAZoCWgPQwh48umxrTdyQJSGlFKUaBVNEQFoFkdAlLZ2AXl8xHV9lChoBmgJaA9DCDD186ZiOnBAlIaUUpRoFU1HAWgWR0CUt6hwl0HRdX2UKGgGaAloD0MIukvirMjVcUCUhpRSlGgVTREBaBZHQJS4NUvPC2t1ZS4="
|
74 |
+
},
|
75 |
+
"ep_success_buffer": {
|
76 |
+
":type:": "<class 'collections.deque'>",
|
77 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
+
},
|
79 |
+
"_n_updates": 248,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null
|
95 |
+
}
|
basic_lander/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:94d8e4c98889d779b97bbcf1f436d04cf9f1e52c0d9eb4a890f10bf10f9b3e42
|
3 |
+
size 87929
|
basic_lander/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1f529b2e83ceb4ae56fc4cc47b23109bd820e1a7bfade242336d5aaa14eb735a
|
3 |
+
size 43393
|
basic_lander/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
basic_lander/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.16
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.0+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f11f4498790>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f11f4498820>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f11f44988b0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f11f4498940>", "_build": "<function ActorCriticPolicy._build at 0x7f11f44989d0>", "forward": "<function ActorCriticPolicy.forward at 0x7f11f4498a60>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f11f4498af0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f11f4498b80>", "_predict": "<function ActorCriticPolicy._predict at 0x7f11f4498c10>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f11f4498ca0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f11f4498d30>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f11f4498dc0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f11f4513810>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673821241324008576, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADPlZTzUPOs+Sv/UPeHHor78AIc9+gaiPQAAAAAAAAAAulsBviJNnz9aqim+ffKovnU9QL7H4Lk8AAAAAAAAAABN0Ay9w5F5uu6d2bvUfOg33E16OAg+J7cAAIA/AACAP7NCGz04qbo+4jA+PWxZYL5cjU89EEiXvAAAAAAAAAAAmlc+vUgEhj7c8zI+FC6NvhsxrDe7vnO9AAAAAAAAAAAaKz09CvRbu86V9Txfe+s8ObOsPP02xL0AAIA/AACAP7OZOz4GX04/gogmvr5voL4Z/pE7ncz4vQAAAAAAAAAAZrwSPDynJj0yUE08UpOGvuTuV7zpmcQ9AAAAAAAAAADNfiG8wxGSPw9RN71kh7C+jS5mPAvd+roAAAAAAAAAAHO1pj1ByFg+svs4vdbNL76wpKk7+s3tvQAAAAAAAAAAmjjnPK4ZoLpEAZc4SYuGM0iq+Ti+3K23AACAPwAAgD8mbZg9ZQsUPuSzxr2SIT2+eCievcBWQb0AAAAAAAAAALOf+j3Juas+8O7uvUlAj77xe4y8FHqkPQAAAAAAAAAAABg5u+TJqj2s9si8oON0vuTqgboONZM9AAAAAAAAAAC6oWA+L6kdP55Lg775qJi+9JqHvGbn4r0AAAAAAAAAAJoqkD0cWBg/1p7VvQIBmb5liR29nht9vQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIz57L1KQ6bkCUhpRSlIwBbJRNLwGMAXSUR0CUSGr1M/QjdX2UKGgGaAloD0MIcVrwoq9Oc0CUhpRSlGgVTTgBaBZHQJRIzEn9ehR1fZQoaAZoCWgPQwgBwRw9/khuQJSGlFKUaBVNSwFoFkdAlElWE0zj3nV9lChoBmgJaA9DCNI1k2/2I3BAlIaUUpRoFU1BAWgWR0CUXTYAsCkodX2UKGgGaAloD0MIy9b6IuFjcECUhpRSlGgVTTQBaBZHQJRfZxDLKV91fZQoaAZoCWgPQwhbzTrje3dwQJSGlFKUaBVNPwFoFkdAlF91GPPszHV9lChoBmgJaA9DCJTcYROZVnFAlIaUUpRoFU0OAWgWR0CUYQrqdH2AdX2UKGgGaAloD0MIoRSt3AsIXUCUhpRSlGgVTegDaBZHQJRhWeZof0V1fZQoaAZoCWgPQwjJBWfwd7NqQJSGlFKUaBVNRgFoFkdAlGHTjzZpSXV9lChoBmgJaA9DCM9qgT0ml2tAlIaUUpRoFU0sAWgWR0CUYn75Ec81dX2UKGgGaAloD0MIOWItPoWOckCUhpRSlGgVTUEBaBZHQJRiocKgIyF1fZQoaAZoCWgPQwhF9GvrJ69yQJSGlFKUaBVNLgFoFkdAlGLMTBZZCHV9lChoBmgJaA9DCDiCVIqdPXBAlIaUUpRoFU0YAWgWR0CUZgjriVB2dX2UKGgGaAloD0MIKqkT0ATtcUCUhpRSlGgVTTIBaBZHQJRmCn4wh4d1fZQoaAZoCWgPQwgUBmUazblwQJSGlFKUaBVNSAFoFkdAlGb2s3hn8XV9lChoBmgJaA9DCFaCxeGMKXFAlIaUUpRoFU09AWgWR0CUZ7eN1hb4dX2UKGgGaAloD0MI6NzteqlncECUhpRSlGgVTbABaBZHQJRoLuQZGax1fZQoaAZoCWgPQwh5zhYQ2gtyQJSGlFKUaBVNLQFoFkdAlGgrS7Xg+HV9lChoBmgJaA9DCHLFxVF5s3BAlIaUUpRoFU1KAWgWR0CUaL1ivxH5dX2UKGgGaAloD0MIHTnSGdixcECUhpRSlGgVTdEBaBZHQJRpnVbzK9x1fZQoaAZoCWgPQwjt153uPDNuQJSGlFKUaBVNRQFoFkdAlGsRS9/SY3V9lChoBmgJaA9DCATj4NJxWHJAlIaUUpRoFU1OAWgWR0CUa1dlNDc/dX2UKGgGaAloD0MIoIfaNkwzcECUhpRSlGgVTSYBaBZHQJRs5tP557h1fZQoaAZoCWgPQwjAWrVrQgJHQJSGlFKUaBVNHgFoFkdAlGz5rpJPInV9lChoBmgJaA9DCJ0PzxJkWG9AlIaUUpRoFU1bAWgWR0CUbjM2m52AdX2UKGgGaAloD0MIDd5X5YJJckCUhpRSlGgVTXIBaBZHQJRumN1hb4d1fZQoaAZoCWgPQwjKG2DmO2FwQJSGlFKUaBVNjAFoFkdAlG81PSDyv3V9lChoBmgJaA9DCB+fkJ2312xAlIaUUpRoFU1pAWgWR0CUb4ErXlKcdX2UKGgGaAloD0MIC2DKwIEhcECUhpRSlGgVTS8BaBZHQJRwv9Q40dl1fZQoaAZoCWgPQwifrBiujsFxQJSGlFKUaBVNPgFoFkdAlHE5vo/zKHV9lChoBmgJaA9DCHrhzoXR/XFAlIaUUpRoFU0TAWgWR0CUcbRZlnRLdX2UKGgGaAloD0MIoYDtYETwb0CUhpRSlGgVTTkBaBZHQJRy/LwF1Sx1fZQoaAZoCWgPQwiBIECGDoBxQJSGlFKUaBVNXwFoFkdAlHMnCwbEP3V9lChoBmgJaA9DCEurIXEPcnBAlIaUUpRoFU1OAWgWR0CUc1BvrGBGdX2UKGgGaAloD0MI6C0e3jNJcUCUhpRSlGgVTR8BaBZHQJR1BVp9JBh1fZQoaAZoCWgPQwh5kJ4iB2FsQJSGlFKUaBVNTQFoFkdAlHUltfoicHV9lChoBmgJaA9DCBFRTN6AE29AlIaUUpRoFU1tAWgWR0CUdVKWcBludX2UKGgGaAloD0MIt7dbkkPscUCUhpRSlGgVTVwBaBZHQJR3QtjCpFV1fZQoaAZoCWgPQwie0OtPYottQJSGlFKUaBVNIgFoFkdAlHhgG0NSZXV9lChoBmgJaA9DCHZvRWICHHJAlIaUUpRoFU1SAWgWR0CUeICMxXXAdX2UKGgGaAloD0MIoDTUKGQ4cUCUhpRSlGgVTVsBaBZHQJR436VMVUN1fZQoaAZoCWgPQwhFuwopf4NwQJSGlFKUaBVNRgFoFkdAlHpXDvVmSXV9lChoBmgJaA9DCFlpUgr64nFAlIaUUpRoFU1xAWgWR0CUet5Dqnm8dX2UKGgGaAloD0MIXtvbLQnEcUCUhpRSlGgVTSABaBZHQJR7NDx9XtB1fZQoaAZoCWgPQwiM17yqs4hrQJSGlFKUaBVNOgFoFkdAlHuhciW3SnV9lChoBmgJaA9DCJsCmZ1F0VBAlIaUUpRoFU0KAWgWR0CUfLdCE6DHdX2UKGgGaAloD0MIF7ZmK698cECUhpRSlGgVTR4BaBZHQJR9FpM6BAh1fZQoaAZoCWgPQwgawFsgwZVxQJSGlFKUaBVNSwFoFkdAlH1P8yeqaXV9lChoBmgJaA9DCCzxgLKpW29AlIaUUpRoFU05AWgWR0CUfiNqQA+7dX2UKGgGaAloD0MIIOup1VfNckCUhpRSlGgVTbgBaBZHQJR+pm7J4jd1fZQoaAZoCWgPQwh63o0FRRJwQJSGlFKUaBVNEwFoFkdAlH72a6STyXV9lChoBmgJaA9DCJI7bCKz6nFAlIaUUpRoFU0kAWgWR0CUfzD6WPcSdX2UKGgGaAloD0MIBfpEnqSnb0CUhpRSlGgVTTYBaBZHQJR/xNdqtYB1fZQoaAZoCWgPQwi8WYP3FdJxQJSGlFKUaBVNRAFoFkdAlJYmhmGucXV9lChoBmgJaA9DCN/42jPLo21AlIaUUpRoFU04AWgWR0CUl2iBGx2TdX2UKGgGaAloD0MI4gSm07pgcECUhpRSlGgVTVQBaBZHQJSX+LZSNwR1fZQoaAZoCWgPQwivmBHe3ntxQJSGlFKUaBVNiQFoFkdAlJpeCCjDbnV9lChoBmgJaA9DCGwGuCBbpG5AlIaUUpRoFU1MAWgWR0CUmou63AmBdX2UKGgGaAloD0MIQS5x5MF6cECUhpRSlGgVTUEBaBZHQJSa7tpmEoR1fZQoaAZoCWgPQwiSPq2iv3FsQJSGlFKUaBVNOAFoFkdAlJvD8UEgXHV9lChoBmgJaA9DCOYhUz5EkXFAlIaUUpRoFU1mAWgWR0CUm/dsBQvYdX2UKGgGaAloD0MIAwr19JG9cECUhpRSlGgVTTcBaBZHQJScWfYjB2x1fZQoaAZoCWgPQwhnuWx0jttxQJSGlFKUaBVNKQFoFkdAlJy/S2H+InV9lChoBmgJaA9DCKT6zi9Kmm9AlIaUUpRoFU2nAWgWR0CUnWw22oegdX2UKGgGaAloD0MIqKs7FlsAbUCUhpRSlGgVTSwBaBZHQJSdbXPJJXh1fZQoaAZoCWgPQwhlVu9wO79vQJSGlFKUaBVNMAFoFkdAlJ7PD50r9XV9lChoBmgJaA9DCK2KcJNRYnBAlIaUUpRoFU1cAWgWR0CUn4+QlruZdX2UKGgGaAloD0MIm44AblbYcECUhpRSlGgVTWoBaBZHQJSfwHGCI1t1fZQoaAZoCWgPQwiwyoXKv9FwQJSGlFKUaBVNKgFoFkdAlKE5VwPy1HV9lChoBmgJaA9DCHkhHR7CtEtAlIaUUpRoFUvxaBZHQJSkTTkQwsZ1fZQoaAZoCWgPQwgvaverANBtQJSGlFKUaBVNFwFoFkdAlKR9xMnJDHV9lChoBmgJaA9DCEQ2kC72PXFAlIaUUpRoFU1qAWgWR0CUpRWaMJhOdX2UKGgGaAloD0MIgSVXsXibbkCUhpRSlGgVTSIBaBZHQJSliL9/BnB1fZQoaAZoCWgPQwgx68VQjuxxQJSGlFKUaBVNEgFoFkdAlKbcSoOx0XV9lChoBmgJaA9DCEvkgjP4a29AlIaUUpRoFU1NAWgWR0CUpvQ8fV7QdX2UKGgGaAloD0MI9fI7TWYtckCUhpRSlGgVTZoBaBZHQJSnn4ubqhV1fZQoaAZoCWgPQwiKBFPNbN5wQJSGlFKUaBVNPAFoFkdAlKesUM5OrXV9lChoBmgJaA9DCM41zND4s21AlIaUUpRoFU03AWgWR0CUp90Bfa6CdX2UKGgGaAloD0MIw7mGGZr3b0CUhpRSlGgVTSwBaBZHQJSoiXv6TGJ1fZQoaAZoCWgPQwhSZRh3A4FxQJSGlFKUaBVNCAFoFkdAlKjCF9KEnXV9lChoBmgJaA9DCNuHvOXqrG5AlIaUUpRoFU07AWgWR0CUqPegte2NdX2UKGgGaAloD0MIDMufbwvEcECUhpRSlGgVTU8BaBZHQJSr0CfYjB51fZQoaAZoCWgPQwjOF3svvrByQJSGlFKUaBVNXgFoFkdAlKwhJqZc9nV9lChoBmgJaA9DCHAjZYvkwHBAlIaUUpRoFU0eAWgWR0CUrnrqMWGidX2UKGgGaAloD0MIXTEjvL0kb0CUhpRSlGgVTT4BaBZHQJSwsbrC3w11fZQoaAZoCWgPQwhwCisV1MpyQJSGlFKUaBVNowFoFkdAlLD6g2606nV9lChoBmgJaA9DCLd7uU9ODHNAlIaUUpRoFU0sAWgWR0CUsdMhHLA6dX2UKGgGaAloD0MIJ9nqcgpdcECUhpRSlGgVTR4BaBZHQJSyWeVcD8t1fZQoaAZoCWgPQwguWKoLeINxQJSGlFKUaBVNOAFoFkdAlLJwaFVT73V9lChoBmgJaA9DCHAnEeFfWnBAlIaUUpRoFU0dAWgWR0CUsxNjLB9DdX2UKGgGaAloD0MIyuL+I9MbbkCUhpRSlGgVTUEBaBZHQJSzenAIpph1fZQoaAZoCWgPQwje5/ho8RhvQJSGlFKUaBVNlwFoFkdAlLPVwo9cKXV9lChoBmgJaA9DCEflJmpp3W5AlIaUUpRoFU0tAWgWR0CUs+stTUAldX2UKGgGaAloD0MIpg9dUB9qcUCUhpRSlGgVTWsBaBZHQJS03kXDWLB1fZQoaAZoCWgPQwjTpBR0+1djQJSGlFKUaBVN6ANoFkdAlLVfdyksSXV9lChoBmgJaA9DCM+ey9TkKXBAlIaUUpRoFU1bAWgWR0CUtbctXgccdX2UKGgGaAloD0MIyM9GrhuOcUCUhpRSlGgVTcMBaBZHQJS2Ew0wait1fZQoaAZoCWgPQwh48umxrTdyQJSGlFKUaBVNEQFoFkdAlLZ2AXl8xHV9lChoBmgJaA9DCDD186ZiOnBAlIaUUpRoFU1HAWgWR0CUt6hwl0HRdX2UKGgGaAloD0MIukvirMjVcUCUhpRSlGgVTREBaBZHQJS4NUvPC2t1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (226 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 259.88177424361686, "std_reward": 27.798305778707068, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-15T22:50:08.319777"}
|