Training complete
Browse files
README.md
CHANGED
@@ -1,9 +1,9 @@
|
|
1 |
---
|
2 |
-
|
|
|
|
|
3 |
tags:
|
4 |
- generated_from_trainer
|
5 |
-
datasets:
|
6 |
-
- ner-tr
|
7 |
metrics:
|
8 |
- precision
|
9 |
- recall
|
@@ -11,29 +11,7 @@ metrics:
|
|
11 |
- accuracy
|
12 |
model-index:
|
13 |
- name: bert-finetuned-ner
|
14 |
-
results:
|
15 |
-
- task:
|
16 |
-
name: Token Classification
|
17 |
-
type: token-classification
|
18 |
-
dataset:
|
19 |
-
name: ner-tr
|
20 |
-
type: ner-tr
|
21 |
-
config: NERTR
|
22 |
-
split: train
|
23 |
-
args: NERTR
|
24 |
-
metrics:
|
25 |
-
- name: Precision
|
26 |
-
type: precision
|
27 |
-
value: 1.0
|
28 |
-
- name: Recall
|
29 |
-
type: recall
|
30 |
-
value: 1.0
|
31 |
-
- name: F1
|
32 |
-
type: f1
|
33 |
-
value: 1.0
|
34 |
-
- name: Accuracy
|
35 |
-
type: accuracy
|
36 |
-
value: 1.0
|
37 |
---
|
38 |
|
39 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -41,13 +19,13 @@ should probably proofread and complete it, then remove this comment. -->
|
|
41 |
|
42 |
# bert-finetuned-ner
|
43 |
|
44 |
-
This model is a fine-tuned version of [
|
45 |
It achieves the following results on the evaluation set:
|
46 |
-
- Loss: 0.
|
47 |
-
- Precision:
|
48 |
-
- Recall:
|
49 |
-
- F1:
|
50 |
-
- Accuracy:
|
51 |
|
52 |
## Model description
|
53 |
|
@@ -76,16 +54,16 @@ The following hyperparameters were used during training:
|
|
76 |
|
77 |
### Training results
|
78 |
|
79 |
-
| Training Loss | Epoch | Step
|
80 |
-
|
81 |
-
| 0.
|
82 |
-
| 0.
|
83 |
-
| 0.
|
84 |
|
85 |
|
86 |
### Framework versions
|
87 |
|
88 |
-
- Transformers 4.
|
89 |
-
- Pytorch
|
90 |
-
- Datasets
|
91 |
-
- Tokenizers 0.
|
|
|
1 |
---
|
2 |
+
library_name: transformers
|
3 |
+
license: apache-2.0
|
4 |
+
base_model: bert-base-cased
|
5 |
tags:
|
6 |
- generated_from_trainer
|
|
|
|
|
7 |
metrics:
|
8 |
- precision
|
9 |
- recall
|
|
|
11 |
- accuracy
|
12 |
model-index:
|
13 |
- name: bert-finetuned-ner
|
14 |
+
results: []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
---
|
16 |
|
17 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
19 |
|
20 |
# bert-finetuned-ner
|
21 |
|
22 |
+
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset.
|
23 |
It achieves the following results on the evaluation set:
|
24 |
+
- Loss: 0.0854
|
25 |
+
- Precision: 0.9707
|
26 |
+
- Recall: 0.9773
|
27 |
+
- F1: 0.9740
|
28 |
+
- Accuracy: 0.9845
|
29 |
|
30 |
## Model description
|
31 |
|
|
|
54 |
|
55 |
### Training results
|
56 |
|
57 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
58 |
+
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
59 |
+
| 0.0627 | 1.0 | 5285 | 0.1139 | 0.9563 | 0.9675 | 0.9619 | 0.9785 |
|
60 |
+
| 0.0502 | 2.0 | 10570 | 0.0914 | 0.9675 | 0.9744 | 0.9709 | 0.9829 |
|
61 |
+
| 0.0686 | 3.0 | 15855 | 0.0854 | 0.9707 | 0.9773 | 0.9740 | 0.9845 |
|
62 |
|
63 |
|
64 |
### Framework versions
|
65 |
|
66 |
+
- Transformers 4.44.2
|
67 |
+
- Pytorch 2.4.1+cu121
|
68 |
+
- Datasets 3.0.1
|
69 |
+
- Tokenizers 0.19.1
|