pnr-svc commited on
Commit
b0f3bd1
1 Parent(s): edd645b

Training complete

Browse files
Files changed (1) hide show
  1. README.md +19 -41
README.md CHANGED
@@ -1,9 +1,9 @@
1
  ---
2
- license: mit
 
 
3
  tags:
4
  - generated_from_trainer
5
- datasets:
6
- - ner-tr
7
  metrics:
8
  - precision
9
  - recall
@@ -11,29 +11,7 @@ metrics:
11
  - accuracy
12
  model-index:
13
  - name: bert-finetuned-ner
14
- results:
15
- - task:
16
- name: Token Classification
17
- type: token-classification
18
- dataset:
19
- name: ner-tr
20
- type: ner-tr
21
- config: NERTR
22
- split: train
23
- args: NERTR
24
- metrics:
25
- - name: Precision
26
- type: precision
27
- value: 1.0
28
- - name: Recall
29
- type: recall
30
- value: 1.0
31
- - name: F1
32
- type: f1
33
- value: 1.0
34
- - name: Accuracy
35
- type: accuracy
36
- value: 1.0
37
  ---
38
 
39
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -41,13 +19,13 @@ should probably proofread and complete it, then remove this comment. -->
41
 
42
  # bert-finetuned-ner
43
 
44
- This model is a fine-tuned version of [dbmdz/bert-base-turkish-cased](https://huggingface.co/dbmdz/bert-base-turkish-cased) on the ner-tr dataset.
45
  It achieves the following results on the evaluation set:
46
- - Loss: 0.0002
47
- - Precision: 1.0
48
- - Recall: 1.0
49
- - F1: 1.0
50
- - Accuracy: 1.0
51
 
52
  ## Model description
53
 
@@ -76,16 +54,16 @@ The following hyperparameters were used during training:
76
 
77
  ### Training results
78
 
79
- | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
80
- |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:---:|:--------:|
81
- | 0.2603 | 1.0 | 529 | 0.0006 | 1.0 | 1.0 | 1.0 | 1.0 |
82
- | 0.002 | 2.0 | 1058 | 0.0003 | 1.0 | 1.0 | 1.0 | 1.0 |
83
- | 0.001 | 3.0 | 1587 | 0.0002 | 1.0 | 1.0 | 1.0 | 1.0 |
84
 
85
 
86
  ### Framework versions
87
 
88
- - Transformers 4.22.1
89
- - Pytorch 1.12.1+cu113
90
- - Datasets 2.4.0
91
- - Tokenizers 0.12.1
 
1
  ---
2
+ library_name: transformers
3
+ license: apache-2.0
4
+ base_model: bert-base-cased
5
  tags:
6
  - generated_from_trainer
 
 
7
  metrics:
8
  - precision
9
  - recall
 
11
  - accuracy
12
  model-index:
13
  - name: bert-finetuned-ner
14
+ results: []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15
  ---
16
 
17
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
19
 
20
  # bert-finetuned-ner
21
 
22
+ This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset.
23
  It achieves the following results on the evaluation set:
24
+ - Loss: 0.0854
25
+ - Precision: 0.9707
26
+ - Recall: 0.9773
27
+ - F1: 0.9740
28
+ - Accuracy: 0.9845
29
 
30
  ## Model description
31
 
 
54
 
55
  ### Training results
56
 
57
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
58
+ |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
59
+ | 0.0627 | 1.0 | 5285 | 0.1139 | 0.9563 | 0.9675 | 0.9619 | 0.9785 |
60
+ | 0.0502 | 2.0 | 10570 | 0.0914 | 0.9675 | 0.9744 | 0.9709 | 0.9829 |
61
+ | 0.0686 | 3.0 | 15855 | 0.0854 | 0.9707 | 0.9773 | 0.9740 | 0.9845 |
62
 
63
 
64
  ### Framework versions
65
 
66
+ - Transformers 4.44.2
67
+ - Pytorch 2.4.1+cu121
68
+ - Datasets 3.0.1
69
+ - Tokenizers 0.19.1