--- library_name: transformers license: apache-2.0 base_model: albert/albert-base-v1 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: [] --- # bert-finetuned-ner This model is a fine-tuned version of [albert/albert-base-v1](https://huggingface.co/albert/albert-base-v1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0994 - Precision: 0.9628 - Recall: 0.9740 - F1: 0.9683 - Accuracy: 0.9813 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0688 | 1.0 | 5285 | 0.1227 | 0.9555 | 0.9670 | 0.9612 | 0.9769 | | 0.0583 | 2.0 | 10570 | 0.1051 | 0.9581 | 0.9723 | 0.9652 | 0.9803 | | 0.0798 | 3.0 | 15855 | 0.0994 | 0.9628 | 0.9740 | 0.9683 | 0.9813 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.19.1