--- language: - tr license: apache-2.0 base_model: openai/whisper-base tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper base tr - Pinar Savci results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: tr split: None args: 'config: tr, split: test' metrics: - name: Wer type: wer value: 32.92193048844385 --- # Whisper base tr - Pinar Savci This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.4000 - Wer: 32.9219 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.2839 | 0.8857 | 1000 | 0.4282 | 35.2545 | | 0.1938 | 1.7715 | 2000 | 0.4027 | 33.2945 | | 0.1292 | 2.6572 | 3000 | 0.4003 | 32.9976 | | 0.1088 | 3.5430 | 4000 | 0.4000 | 32.9219 | ### Framework versions - Transformers 4.43.3 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1