|
from typing import Dict, List, Optional, Tuple, Union, Iterable |
|
|
|
import numpy as np |
|
import torch |
|
import transformers |
|
from transformers.image_processing_utils import BaseImageProcessor, BatchFeature |
|
from transformers.image_transforms import ( |
|
ChannelDimension, |
|
get_resize_output_image_size, |
|
rescale, |
|
resize, |
|
to_channel_dimension_format, |
|
) |
|
from transformers.image_utils import ( |
|
ImageInput, |
|
PILImageResampling, |
|
infer_channel_dimension_format, |
|
get_channel_dimension_axis, |
|
make_list_of_images, |
|
to_numpy_array, |
|
valid_images, |
|
) |
|
from transformers.utils import is_torch_tensor |
|
|
|
|
|
class FaceSegformerImageProcessor(BaseImageProcessor): |
|
def __init__(self, **kwargs): |
|
super().__init__(**kwargs) |
|
self.image_size = kwargs.get("image_size", (224, 224)) |
|
self.normalize_mean = kwargs.get("normalize_mean", [0.485, 0.456, 0.406]) |
|
self.normalize_std = kwargs.get("normalize_std", [0.229, 0.224, 0.225]) |
|
self.resample = kwargs.get("resample", PILImageResampling.BILINEAR) |
|
self.data_format = kwargs.get("data_format", ChannelDimension.FIRST) |
|
|
|
@staticmethod |
|
def normalize( |
|
image: np.ndarray, |
|
mean: Union[float, Iterable[float]], |
|
std: Union[float, Iterable[float]], |
|
max_pixel_value: float = 255.0, |
|
data_format: Optional[ChannelDimension] = None, |
|
input_data_format: Optional[Union[str, ChannelDimension]] = None, |
|
) -> np.ndarray: |
|
""" |
|
Copied from: |
|
https://github.com/huggingface/transformers/blob/3eddda1111f70f3a59485e08540e8262b927e867/src/transformers/image_transforms.py#L209 |
|
|
|
BUT uses the formula from albumentations: |
|
https://albumentations.ai/docs/api_reference/augmentations/transforms/#albumentations.augmentations.transforms.Normalize |
|
|
|
img = (img - mean * max_pixel_value) / (std * max_pixel_value) |
|
""" |
|
if not isinstance(image, np.ndarray): |
|
raise ValueError("image must be a numpy array") |
|
|
|
if input_data_format is None: |
|
input_data_format = infer_channel_dimension_format(image) |
|
channel_axis = get_channel_dimension_axis( |
|
image, input_data_format=input_data_format |
|
) |
|
num_channels = image.shape[channel_axis] |
|
|
|
|
|
|
|
if not np.issubdtype(image.dtype, np.floating): |
|
image = image.astype(np.float32) |
|
|
|
if isinstance(mean, Iterable): |
|
if len(mean) != num_channels: |
|
raise ValueError( |
|
f"mean must have {num_channels} elements if it is an iterable, got {len(mean)}" |
|
) |
|
else: |
|
mean = [mean] * num_channels |
|
mean = np.array(mean, dtype=image.dtype) |
|
|
|
if isinstance(std, Iterable): |
|
if len(std) != num_channels: |
|
raise ValueError( |
|
f"std must have {num_channels} elements if it is an iterable, got {len(std)}" |
|
) |
|
else: |
|
std = [std] * num_channels |
|
std = np.array(std, dtype=image.dtype) |
|
|
|
|
|
if input_data_format == ChannelDimension.LAST: |
|
image = (image - mean * max_pixel_value) / (std * max_pixel_value) |
|
else: |
|
image = ((image.T - mean * max_pixel_value) / (std * max_pixel_value)).T |
|
|
|
image = ( |
|
to_channel_dimension_format(image, data_format, input_data_format) |
|
if data_format is not None |
|
else image |
|
) |
|
return image |
|
|
|
def resize( |
|
self, |
|
image: np.ndarray, |
|
size: Dict[str, int], |
|
resample: PILImageResampling = PILImageResampling.BICUBIC, |
|
data_format: Optional[Union[str, ChannelDimension]] = None, |
|
input_data_format: Optional[Union[str, ChannelDimension]] = None, |
|
**kwargs, |
|
) -> np.ndarray: |
|
""" |
|
Copied from: |
|
https://github.com/huggingface/transformers/blob/3eddda1111f70f3a59485e08540e8262b927e867/src/transformers/models/mobilenet_v2/image_processing_mobilenet_v2.py |
|
""" |
|
default_to_square = True |
|
if "shortest_edge" in size: |
|
size = size["shortest_edge"] |
|
default_to_square = False |
|
elif "height" in size and "width" in size: |
|
size = (size["height"], size["width"]) |
|
else: |
|
raise ValueError( |
|
"Size must contain either 'shortest_edge' or 'height' and 'width'." |
|
) |
|
|
|
output_size = get_resize_output_image_size( |
|
image, |
|
size=size, |
|
default_to_square=default_to_square, |
|
input_data_format=input_data_format, |
|
) |
|
return resize( |
|
image, |
|
size=output_size, |
|
resample=resample, |
|
data_format=data_format, |
|
input_data_format=input_data_format, |
|
**kwargs, |
|
) |
|
|
|
def __call__(self, images: ImageInput, masks: ImageInput = None, **kwargs): |
|
""" |
|
Adapted from: |
|
https://github.com/huggingface/transformers/blob/3eddda1111f70f3a59485e08540e8262b927e867/src/transformers/models/mobilenet_v2/image_processing_mobilenet_v2.py |
|
""" |
|
|
|
images = make_list_of_images(images) |
|
|
|
|
|
if not valid_images(images): |
|
raise ValueError( |
|
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " |
|
"torch.Tensor, tf.Tensor or jax.ndarray." |
|
) |
|
|
|
|
|
images = [to_numpy_array(image) for image in images] |
|
|
|
|
|
input_data_format = kwargs.get("input_data_format") |
|
if input_data_format is None: |
|
|
|
input_data_format = infer_channel_dimension_format(images[0]) |
|
|
|
|
|
|
|
if kwargs.get("do_training", False) is True: |
|
if mask is None: |
|
raise ValueError("must pass masks if doing training.") |
|
|
|
raise NotImplementedError("not yet implemented.") |
|
|
|
else: |
|
|
|
images = [ |
|
self.resize( |
|
image=image, |
|
size={"height": self.image_size[0], "width": self.image_size[1]}, |
|
resample=kwargs.get("resample") or self.resample, |
|
input_data_format=input_data_format, |
|
) |
|
for image in images |
|
] |
|
images = [ |
|
self.normalize( |
|
image=image, |
|
mean=kwargs.get("normalize_mean") or self.normalize_mean, |
|
std=kwargs.get("normalize_std") or self.normalize_std, |
|
input_data_format=input_data_format, |
|
) |
|
for image in images |
|
] |
|
|
|
images = [ |
|
to_channel_dimension_format( |
|
image, |
|
kwargs.get("data_format") or self.data_format, |
|
input_channel_dim=input_data_format, |
|
) |
|
for image in images |
|
] |
|
|
|
data = {"pixel_values": images} |
|
return BatchFeature(data=data, tensor_type="pt") |
|
|
|
|
|
def post_process_semantic_segmentation( |
|
self, outputs, target_sizes: List[Tuple] = None |
|
): |
|
""" |
|
Converts the output of [`SegformerForSemanticSegmentation`] into semantic segmentation maps. Only supports PyTorch. |
|
|
|
Args: |
|
outputs ([`SegformerForSemanticSegmentation`]): |
|
Raw outputs of the model. |
|
target_sizes (`List[Tuple]` of length `batch_size`, *optional*): |
|
List of tuples corresponding to the requested final size (height, width) of each prediction. If unset, |
|
predictions will not be resized. |
|
|
|
Returns: |
|
semantic_segmentation: `List[torch.Tensor]` of length `batch_size`, where each item is a semantic |
|
segmentation map of shape (height, width) corresponding to the target_sizes entry (if `target_sizes` is |
|
specified). Each entry of each `torch.Tensor` correspond to a semantic class id. |
|
""" |
|
|
|
logits = outputs.logits |
|
|
|
|
|
if target_sizes is not None: |
|
if len(logits) != len(target_sizes): |
|
raise ValueError( |
|
"Make sure that you pass in as many target sizes as the batch dimension of the logits" |
|
) |
|
|
|
if is_torch_tensor(target_sizes): |
|
target_sizes = target_sizes.numpy() |
|
|
|
semantic_segmentation = [] |
|
|
|
for idx in range(len(logits)): |
|
resized_logits = torch.nn.functional.interpolate( |
|
logits[idx].unsqueeze(dim=0), |
|
size=target_sizes[idx], |
|
mode="bilinear", |
|
align_corners=False, |
|
) |
|
semantic_map = resized_logits[0].argmax(dim=0) |
|
semantic_segmentation.append(semantic_map) |
|
else: |
|
semantic_segmentation = logits.argmax(dim=1) |
|
semantic_segmentation = [ |
|
semantic_segmentation[i] for i in range(semantic_segmentation.shape[0]) |
|
] |
|
|
|
return semantic_segmentation |
|
|