File size: 1,840 Bytes
8e52be4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c2d424
8e52be4
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- cd45rb
model-index:
- name: detr-r50-cd45rb-7k-8ah
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# detr-r50-cd45rb-7k-8ah

This model is a fine-tuned version of [facebook/detr-resnet-50](https://huggingface.co/facebook/detr-resnet-50) on the cd45rb dataset.
It achieves the following results on the evaluation set:
- Loss: 1.7164

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.5817        | 1.0   | 896  | 1.9431          |
| 2.2882        | 2.0   | 1792 | 1.8638          |
| 2.2236        | 3.0   | 2688 | 1.8089          |
| 2.1649        | 4.0   | 3584 | 1.7843          |
| 2.1275        | 5.0   | 4480 | 1.7593          |
| 2.1176        | 6.0   | 5376 | 1.7542          |
| 2.1037        | 7.0   | 6272 | 1.7386          |
| 2.0969        | 8.0   | 7168 | 1.7242          |
| 2.0794        | 9.0   | 8064 | 1.7200          |
| 2.0792        | 10.0  | 8960 | 1.7164          |

The training took 3 hours 15 minutes on NVIDIA GPU.

### Framework versions

- Transformers 4.28.0
- Pytorch 2.0.1
- Datasets 2.12.0
- Tokenizers 0.13.3