update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- xbgoose/ravdess
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
model-index:
|
10 |
+
- name: distilhubert-finetuned-ravdess
|
11 |
+
results: []
|
12 |
+
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
# distilhubert-finetuned-ravdess
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the RAVDESS dataset.
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 0.2810
|
22 |
+
- Accuracy: 0.9236
|
23 |
+
|
24 |
+
## Model description
|
25 |
+
|
26 |
+
More information needed
|
27 |
+
|
28 |
+
## Intended uses & limitations
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Training and evaluation data
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training procedure
|
37 |
+
|
38 |
+
### Training hyperparameters
|
39 |
+
|
40 |
+
The following hyperparameters were used during training:
|
41 |
+
- learning_rate: 5e-05
|
42 |
+
- train_batch_size: 8
|
43 |
+
- eval_batch_size: 8
|
44 |
+
- seed: 42
|
45 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
46 |
+
- lr_scheduler_type: linear
|
47 |
+
- lr_scheduler_warmup_ratio: 0.1
|
48 |
+
- num_epochs: 10
|
49 |
+
|
50 |
+
### Training results
|
51 |
+
|
52 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
53 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
54 |
+
| 1.7599 | 1.0 | 162 | 1.7350 | 0.3264 |
|
55 |
+
| 1.3271 | 2.0 | 324 | 1.1987 | 0.5972 |
|
56 |
+
| 0.8845 | 3.0 | 486 | 0.8824 | 0.7639 |
|
57 |
+
| 0.6083 | 4.0 | 648 | 0.5919 | 0.8403 |
|
58 |
+
| 0.4952 | 5.0 | 810 | 0.4469 | 0.8611 |
|
59 |
+
| 0.1386 | 6.0 | 972 | 0.3736 | 0.8681 |
|
60 |
+
| 0.1028 | 7.0 | 1134 | 0.3645 | 0.8819 |
|
61 |
+
| 0.053 | 8.0 | 1296 | 0.3079 | 0.9028 |
|
62 |
+
| 0.0149 | 9.0 | 1458 | 0.2723 | 0.9236 |
|
63 |
+
| 0.0154 | 10.0 | 1620 | 0.2810 | 0.9236 |
|
64 |
+
|
65 |
+
|
66 |
+
### Framework versions
|
67 |
+
|
68 |
+
- Transformers 4.30.2
|
69 |
+
- Pytorch 2.0.0
|
70 |
+
- Datasets 2.13.0
|
71 |
+
- Tokenizers 0.13.3
|