pollner commited on
Commit
afeeb24
1 Parent(s): 0b4f093

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +71 -0
README.md ADDED
@@ -0,0 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - xbgoose/ravdess
7
+ metrics:
8
+ - accuracy
9
+ model-index:
10
+ - name: distilhubert-finetuned-ravdess
11
+ results: []
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # distilhubert-finetuned-ravdess
18
+
19
+ This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the RAVDESS dataset.
20
+ It achieves the following results on the evaluation set:
21
+ - Loss: 0.2810
22
+ - Accuracy: 0.9236
23
+
24
+ ## Model description
25
+
26
+ More information needed
27
+
28
+ ## Intended uses & limitations
29
+
30
+ More information needed
31
+
32
+ ## Training and evaluation data
33
+
34
+ More information needed
35
+
36
+ ## Training procedure
37
+
38
+ ### Training hyperparameters
39
+
40
+ The following hyperparameters were used during training:
41
+ - learning_rate: 5e-05
42
+ - train_batch_size: 8
43
+ - eval_batch_size: 8
44
+ - seed: 42
45
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
46
+ - lr_scheduler_type: linear
47
+ - lr_scheduler_warmup_ratio: 0.1
48
+ - num_epochs: 10
49
+
50
+ ### Training results
51
+
52
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
53
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
54
+ | 1.7599 | 1.0 | 162 | 1.7350 | 0.3264 |
55
+ | 1.3271 | 2.0 | 324 | 1.1987 | 0.5972 |
56
+ | 0.8845 | 3.0 | 486 | 0.8824 | 0.7639 |
57
+ | 0.6083 | 4.0 | 648 | 0.5919 | 0.8403 |
58
+ | 0.4952 | 5.0 | 810 | 0.4469 | 0.8611 |
59
+ | 0.1386 | 6.0 | 972 | 0.3736 | 0.8681 |
60
+ | 0.1028 | 7.0 | 1134 | 0.3645 | 0.8819 |
61
+ | 0.053 | 8.0 | 1296 | 0.3079 | 0.9028 |
62
+ | 0.0149 | 9.0 | 1458 | 0.2723 | 0.9236 |
63
+ | 0.0154 | 10.0 | 1620 | 0.2810 | 0.9236 |
64
+
65
+
66
+ ### Framework versions
67
+
68
+ - Transformers 4.30.2
69
+ - Pytorch 2.0.0
70
+ - Datasets 2.13.0
71
+ - Tokenizers 0.13.3