--- license: apache-2.0 tags: - generated_from_trainer datasets: - xbgoose/ravdess metrics: - accuracy base_model: ntu-spml/distilhubert model-index: - name: distilhubert-finetuned-ravdess results: [] --- # distilhubert-finetuned-ravdess This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the RAVDESS dataset. It achieves the following results on the evaluation set: - Loss: 0.2810 - Accuracy: 0.9236 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.7599 | 1.0 | 162 | 1.7350 | 0.3264 | | 1.3271 | 2.0 | 324 | 1.1987 | 0.5972 | | 0.8845 | 3.0 | 486 | 0.8824 | 0.7639 | | 0.6083 | 4.0 | 648 | 0.5919 | 0.8403 | | 0.4952 | 5.0 | 810 | 0.4469 | 0.8611 | | 0.1386 | 6.0 | 972 | 0.3736 | 0.8681 | | 0.1028 | 7.0 | 1134 | 0.3645 | 0.8819 | | 0.053 | 8.0 | 1296 | 0.3079 | 0.9028 | | 0.0149 | 9.0 | 1458 | 0.2723 | 0.9236 | | 0.0154 | 10.0 | 1620 | 0.2810 | 0.9236 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.0 - Datasets 2.13.0 - Tokenizers 0.13.3