--- license: mit language: - multilingual tags: - zero-shot-classification - text-classification - pytorch metrics: - accuracy - f1-score extra_gated_prompt: 'Our models are intended for academic use only. If you are not affiliated with an academic institution, please provide a rationale for using our models. If you use our models for your work or research, please cite this paper: Sebők, M., Máté, Á., Ring, O., Kovács, V., & Lehoczki, R. (2024). Leveraging Open Large Language Models for Multilingual Policy Topic Classification: The Babel Machine Approach. Social Science Computer Review, 0(0). https://doi.org/10.1177/08944393241259434' extra_gated_fields: Name: text Country: country Institution: text E-mail: text Use case: text --- # xlm-roberta-large-legislative-cap-v3 ## Model description An `xlm-roberta-large` model finetuned on multilingual training data containing texts of the `legislative` domain labelled with [major topic codes](https://www.comparativeagendas.net/pages/master-codebook) from the [Comparative Agendas Project](https://www.comparativeagendas.net/). ## How to use the model #### Loading and tokenizing input data ```python import pandas as pd import numpy as np from datasets import Dataset from transformers import (AutoModelForSequenceClassification, AutoTokenizer, Trainer, TrainingArguments) CAP_NUM_DICT = {0: '1', 1: '2', 2: '3', 3: '4', 4: '5', 5: '6', 6: '7', 7: '8', 8: '9', 9: '10', 10: '12', 11: '13', 12: '14', 13: '15', 14: '16', 15: '17', 16: '18', 17: '19', 18: '20', 19: '21', 20: '23', 21: '999'} tokenizer = AutoTokenizer.from_pretrained('xlm-roberta-large') num_labels = len(CAP_NUM_DICT) def tokenize_dataset(data : pd.DataFrame): tokenized = tokenizer(data["text"], max_length=MAXLEN, truncation=True, padding="max_length") return tokenized hg_data = Dataset.from_pandas(data) dataset = hg_data.map(tokenize_dataset, batched=True, remove_columns=hg_data.column_names) ``` #### Inference using the Trainer class ```python model = AutoModelForSequenceClassification.from_pretrained('poltextlab/xlm-roberta-large-legislative-cap-v3', num_labels=22, problem_type="multi_label_classification", ignore_mismatched_sizes=True ) training_args = TrainingArguments( output_dir='.', per_device_train_batch_size=8, per_device_eval_batch_size=8 ) trainer = Trainer( model=model, args=training_args ) probs = trainer.predict(test_dataset=dataset).predictions predicted = pd.DataFrame(np.argmax(probs, axis=1)).replace({0: CAP_NUM_DICT}).rename( columns={0: 'predicted'}).reset_index(drop=True) ``` ### Fine-tuning procedure `xlm-roberta-large-legislative-cap-v3` was fine-tuned using the Hugging Face Trainer class with the following hyperparameters: ```python training_args = TrainingArguments( output_dir=f"../model/{model_dir}/tmp/", logging_dir=f"../logs/{model_dir}/", logging_strategy='epoch', num_train_epochs=10, per_device_train_batch_size=8, per_device_eval_batch_size=8, learning_rate=5e-06, seed=42, save_strategy='epoch', evaluation_strategy='epoch', save_total_limit=1, load_best_model_at_end=True ) ``` We also incorporated an EarlyStoppingCallback in the process with a patience of 2 epochs. ## Model performance The model was evaluated on a test set of 163947 examples (10% of the available data).
Model accuracy is **0.89**. | label | precision | recall | f1-score | support | |:-------------|------------:|---------:|-----------:|----------:| | 0 | 0.83 | 0.82 | 0.83 | 7095 | | 1 | 0.82 | 0.8 | 0.81 | 3326 | | 2 | 0.9 | 0.93 | 0.92 | 10975 | | 3 | 0.9 | 0.91 | 0.91 | 5783 | | 4 | 0.85 | 0.84 | 0.85 | 5451 | | 5 | 0.9 | 0.94 | 0.92 | 6858 | | 6 | 0.87 | 0.88 | 0.88 | 5495 | | 7 | 0.88 | 0.92 | 0.9 | 4597 | | 8 | 0.87 | 0.89 | 0.88 | 1737 | | 9 | 0.89 | 0.91 | 0.9 | 8849 | | 10 | 0.89 | 0.9 | 0.9 | 11791 | | 11 | 0.86 | 0.87 | 0.87 | 6234 | | 12 | 0.88 | 0.82 | 0.85 | 3593 | | 13 | 0.88 | 0.85 | 0.87 | 10178 | | 14 | 0.88 | 0.88 | 0.88 | 10644 | | 15 | 0.92 | 0.91 | 0.91 | 4381 | | 16 | 0.91 | 0.92 | 0.91 | 5067 | | 17 | 0.84 | 0.86 | 0.85 | 4896 | | 18 | 0.9 | 0.87 | 0.88 | 19029 | | 19 | 0.88 | 0.92 | 0.9 | 10958 | | 20 | 0.74 | 0.72 | 0.73 | 225 | | 21 | 0.99 | 0.96 | 0.97 | 16785 | | macro avg | 0.88 | 0.88 | 0.88 | 163947 | | weighted avg | 0.89 | 0.89 | 0.89 | 163947 | ## Inference platform This model is used by the [CAP Babel Machine](https://babel.poltextlab.com), an open-source and free natural language processing tool, designed to simplify and speed up projects for comparative research. ## Cooperation Model performance can be significantly improved by extending our training sets. We appreciate every submission of CAP-coded corpora (of any domain and language) at poltextlab{at}poltextlab{dot}com or by using the [CAP Babel Machine](https://babel.poltextlab.com). ## Debugging and issues This architecture uses the `sentencepiece` tokenizer. In order to run the model before `transformers==4.27` you need to install it manually. If you encounter a `RuntimeError` when loading the model using the `from_pretrained()` method, adding `ignore_mismatched_sizes=True` should solve the issue.