ppo-lunar-ponci-test / config.json
ponci's picture
Test uploading to HF
4922fd5
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fea25246710>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fea252467a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fea25246830>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fea252468c0>", "_build": "<function ActorCriticPolicy._build at 0x7fea25246950>", "forward": "<function ActorCriticPolicy.forward at 0x7fea252469e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fea25246a70>", "_predict": "<function ActorCriticPolicy._predict at 0x7fea25246b00>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fea25246b90>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fea25246c20>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fea25246cb0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fea25295840>"}, "verbose": 0, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1007616, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1654200176.5768323, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAALXfDPtY2MT31cei6NCQXuQ4D/T04Egs6AACAPwAAgD8NbxC+b0B+PvD3IL2bhDC+aUr8vE5s/7wAAAAAAAAAAM2hMT16Dhk+CEx0vUcWz70FOBW9KumMvAAAAAAAAAAAk5dGvqgj8byQ47a8MptMvjQXVD7LSu+9AACAPwAAgD8GLCI+peFOP6lbQT7kxIq+Yhk+PUUc1bwAAAAAAAAAALPJbD6TuoU/BjeOPkLHhb6Ku/c97IiUvQAAAAAAAAAA03pcvlv5n7xlSmQ5NU6hN65/Gz5cOZK4AACAPwAAgD+aYkM+XGkkvEIH8DpucLK4Y/CKvUPGD7oAAIA/AACAP9j8h77nXcA+hpf7PXsGWb4nYs484oboPAAAAAAAAAAAetuRPsSNIb1VSK68ahiDPa4sB75ylCs7AACAPwAAgD8NV669MmiUP0r3mr5K4bC+PpegvNWoEr4AAAAAAAAAAOI4lb4HQFY+Le4FvR34NL4+Rxy8J4O5vAAAAAAAAAAAeP4HP70oPj7l27I8Lk8evq4wZD1eSDE9AAAAAAAAAABm3z2+eguQP0je+L5u9Za+A0cuvoprV74AAAAAAAAAALo+O76cEyW8PYolu5+sArlhuIk9o7tHOgAAgD8AAIA/HbuDPmn6Mj17VF288g/1vcaNEj0y4iU9AAAAAAAAAACUdJRiLg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVfhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIhXmPM81eakCUhpRSlIwBbJRNkwGMAXSUR0CxM/38wYcedX2UKGgGaAloD0MIf/s6cE5tbECUhpRSlGgVTUYBaBZHQLE0ESb6P811fZQoaAZoCWgPQwhbIhecQflsQJSGlFKUaBVNSAFoFkdAsTTjijtXxXV9lChoBmgJaA9DCCUH7GpyfGtAlIaUUpRoFU1WAWgWR0CxNV7qIJqqdX2UKGgGaAloD0MIwoU8ghswXECUhpRSlGgVTegDaBZHQLE1hCHARCh1fZQoaAZoCWgPQwgDB7R0hZhtQJSGlFKUaBVNoQFoFkdAsTakqgAZKnV9lChoBmgJaA9DCLdGBONgFmJAlIaUUpRoFU3oA2gWR0CxNzRQBPsSdX2UKGgGaAloD0MIesVTj7T9a0CUhpRSlGgVTU8BaBZHQLE3f8La24N1fZQoaAZoCWgPQwgnMJ3WbQNqQJSGlFKUaBVNhwFoFkdAsTqVNWU8m3V9lChoBmgJaA9DCIsyG2SSrWxAlIaUUpRoFU1LAWgWR0CxOrbA+IM0dX2UKGgGaAloD0MIWi4bnXPOb0CUhpRSlGgVTUQBaBZHQLE6+ypaRp11fZQoaAZoCWgPQwhweawZGfBrQJSGlFKUaBVNYgFoFkdAsTt2YSg5BHV9lChoBmgJaA9DCD0QWaSJBWtAlIaUUpRoFU1DAWgWR0CxO+HBciW3dX2UKGgGaAloD0MIQtKnVfRnIcCUhpRSlGgVTRoBaBZHQLE78L3sXzl1fZQoaAZoCWgPQwiWs3dGW6UWQJSGlFKUaBVNUAFoFkdAsTx4WAPNFHV9lChoBmgJaA9DCDhNnx1wYlhAlIaUUpRoFU3oA2gWR0CxPQKESM99dX2UKGgGaAloD0MIWB050hl0XkCUhpRSlGgVTegDaBZHQLE90ygwoLJ1fZQoaAZoCWgPQwiTpkHRvOlrQJSGlFKUaBVNfwFoFkdAsT4ZfMOf/XV9lChoBmgJaA9DCMpOP6hLM3BAlIaUUpRoFU01AWgWR0CxPwRwAEMcdX2UKGgGaAloD0MITpfFxOadXECUhpRSlGgVTegDaBZHQLE/Ea5wwTN1fZQoaAZoCWgPQwica5ih8f9eQJSGlFKUaBVN6ANoFkdAsT84UAT7EnV9lChoBmgJaA9DCBmuDoC4CwfAlIaUUpRoFU1iAWgWR0CxP0GhM8HOdX2UKGgGaAloD0MI6KIh41EvZUCUhpRSlGgVTV4BaBZHQLFABqwyIpJ1fZQoaAZoCWgPQwhn0xHATW9vQJSGlFKUaBVNJgFoFkdAsUBVwjt5U3V9lChoBmgJaA9DCAuZK4NqVm9AlIaUUpRoFU1TAWgWR0CxQFqaG5+ZdX2UKGgGaAloD0MIiV+xhoudVUCUhpRSlGgVTegDaBZHQLFDWVlf7aZ1fZQoaAZoCWgPQwhqozodyBhoQJSGlFKUaBVNlQFoFkdAsUN0y31BdHV9lChoBmgJaA9DCI7J4v6jiGxAlIaUUpRoFU1XAWgWR0CxQ8ydSVGDdX2UKGgGaAloD0MI5Gcj1w1icECUhpRSlGgVTYYCaBZHQLFEWlDneSB1fZQoaAZoCWgPQwhjm1Q0VuJtQJSGlFKUaBVNbgFoFkdAsUUsy0rsjXV9lChoBmgJaA9DCIRFRZzOl25AlIaUUpRoFU0iAWgWR0CxRTnb/Ot5dX2UKGgGaAloD0MIeekmMQj9WkCUhpRSlGgVTegDaBZHQLFFoDDjzZp1fZQoaAZoCWgPQwj51/LKdSNrQJSGlFKUaBVNawFoFkdAsUYqjrRjSXV9lChoBmgJaA9DCLn+XZ856w3AlIaUUpRoFU0ZAWgWR0CxRjIzSCvpdX2UKGgGaAloD0MIgxQ8hVzJakCUhpRSlGgVTY4BaBZHQLFGX4QjD9B1fZQoaAZoCWgPQwg91SE3Q+hsQJSGlFKUaBVNNAFoFkdAsUZ9fCyhSXV9lChoBmgJaA9DCEktlExOIGpAlIaUUpRoFU2gAWgWR0CxRpnt8eCDdX2UKGgGaAloD0MIATCeQUMjP8CUhpRSlGgVTWABaBZHQLFGr+H8CPp1fZQoaAZoCWgPQwhiaHVyBhZtQJSGlFKUaBVNbQFoFkdAsUenM7lq8HV9lChoBmgJaA9DCLGJzFxg9GpAlIaUUpRoFU2GAmgWR0CxR/tgv115dX2UKGgGaAloD0MIgVt385QncECUhpRSlGgVTWkBaBZHQLFIYgKF7D51fZQoaAZoCWgPQwikNnFyv7hcQJSGlFKUaBVN6ANoFkdAsUiIEkjX4HV9lChoBmgJaA9DCKWjHMymdHBAlIaUUpRoFU2lAWgWR0CxSIsEV32VdX2UKGgGaAloD0MIA7ABEeKaXUCUhpRSlGgVTegDaBZHQLFLfWEbo8p1fZQoaAZoCWgPQwjAz7hwoAhqQJSGlFKUaBVNdQFoFkdAsUuNyaNMoXV9lChoBmgJaA9DCPYKC+4H2GdAlIaUUpRoFU2AAWgWR0CxS/5d0JWvdX2UKGgGaAloD0MIgQpHkEogbUCUhpRSlGgVTXIBaBZHQLFMUle4Tbp1fZQoaAZoCWgPQwgRiq2gaV1rQJSGlFKUaBVNXQFoFkdAsUx9ETg2qHV9lChoBmgJaA9DCOc5It8lmW9AlIaUUpRoFU15AWgWR0CxTKicLBsRdX2UKGgGaAloD0MIYr8n1qmCbkCUhpRSlGgVTY0BaBZHQLFMvs2NvO11fZQoaAZoCWgPQwgLmSuD6qVxQJSGlFKUaBVNiwJoFkdAsUzXPfKp1nV9lChoBmgJaA9DCPZ/DvPlhG1AlIaUUpRoFU2FAWgWR0CxTPLZ39rHdX2UKGgGaAloD0MIHJqy049da0CUhpRSlGgVTUEBaBZHQLFNd5UcXFd1fZQoaAZoCWgPQwj5254gsT05wJSGlFKUaBVL1WgWR0CxTYBYq5LAdX2UKGgGaAloD0MIPC6qRUSRFUCUhpRSlGgVTREBaBZHQLFNg2NvOyF1fZQoaAZoCWgPQwj9gt2wbSFsQJSGlFKUaBVNbAFoFkdAsU2RMFlkH3V9lChoBmgJaA9DCDRIwVPIkm1AlIaUUpRoFU1KAWgWR0CxTdMVpKzzdX2UKGgGaAloD0MIMxgjEgVbcECUhpRSlGgVTSgBaBZHQLFPIoRZlnR1fZQoaAZoCWgPQwhoBBvXv1tFwJSGlFKUaBVNGwFoFkdAsU9NqO938nV9lChoBmgJaA9DCJG28ScqL29AlIaUUpRoFU1lAWgWR0CxT036l+EzdX2UKGgGaAloD0MIX2BWKNKaakCUhpRSlGgVTXcBaBZHQLFP4KsMiKR1fZQoaAZoCWgPQwhI/mDgOXlqQJSGlFKUaBVNDwJoFkdAsVAEF4cFQnV9lChoBmgJaA9DCDaQLjatNDhAlIaUUpRoFU1PAWgWR0CxUAl4xDb8dX2UKGgGaAloD0MIfQOTG0V6P8CUhpRSlGgVTQcBaBZHQLFQGs5GSZB1fZQoaAZoCWgPQwhUVWgglo0xwJSGlFKUaBVNCAFoFkdAsVLbnU2DQXV9lChoBmgJaA9DCPOuesA8dm9AlIaUUpRoFU2yAWgWR0CxUyeLm6oVdX2UKGgGaAloD0MIKUF/oUeXbECUhpRSlGgVTWYBaBZHQLFTWVfNRm91fZQoaAZoCWgPQwjzHmeacD1wQJSGlFKUaBVNcgFoFkdAsVOC9oN/fHV9lChoBmgJaA9DCIVALnHkATvAlIaUUpRoFU25AWgWR0CxU4qEzwc6dX2UKGgGaAloD0MIu7a3W5JUYkCUhpRSlGgVTegDaBZHQLFT7g5zYEp1fZQoaAZoCWgPQwimYfiImBxDwJSGlFKUaBVLzWgWR0CxVHd4eLeidX2UKGgGaAloD0MIAI3SpX8/XUCUhpRSlGgVTegDaBZHQLFUyEmY0EZ1fZQoaAZoCWgPQwi5Us+CUPtrQJSGlFKUaBVNTgFoFkdAsVUl0Rvm5nV9lChoBmgJaA9DCFKeeTns1mtAlIaUUpRoFU2CAWgWR0CxVZe8Gs3idX2UKGgGaAloD0MIaB8r+G2Da0CUhpRSlGgVTVIBaBZHQLFV7HfuTid1fZQoaAZoCWgPQwgj9Z7KaQ8zwJSGlFKUaBVNmQFoFkdAsVYEkKNQ03V9lChoBmgJaA9DCKfria4LQ2xAlIaUUpRoFU18AWgWR0CxVj70z0pWdX2UKGgGaAloD0MIkL+0qE86M0CUhpRSlGgVTQABaBZHQLFWUYx+KCR1fZQoaAZoCWgPQwgJGjOJ+o1sQJSGlFKUaBVNTQFoFkdAsVZrOObRW3V9lChoBmgJaA9DCEc9RKM7qG1AlIaUUpRoFU1IAWgWR0CxVqXYDklvdX2UKGgGaAloD0MI5zki3yURakCUhpRSlGgVTXABaBZHQLFXRdZaFEl1fZQoaAZoCWgPQwiPM03YfnIPQJSGlFKUaBVL9WgWR0CxV9XXmNipdX2UKGgGaAloD0MIC7Q7pBi3XECUhpRSlGgVTegDaBZHQLFYE4cFQl91fZQoaAZoCWgPQwgMeJlho+pBwJSGlFKUaBVNBQFoFkdAsVrSwhW5pnV9lChoBmgJaA9DCHzVyoTfR2xAlIaUUpRoFU1eAWgWR0CxWwpl4C6pdX2UKGgGaAloD0MIAFKbOLlJa0CUhpRSlGgVTa0BaBZHQLFbCPPLPld1fZQoaAZoCWgPQwgGZRpNrpNnQJSGlFKUaBVNwwFoFkdAsVvXV7Qb/HV9lChoBmgJaA9DCEW6n1OQ4GpAlIaUUpRoFU1eAWgWR0CxXEJrDZUUdX2UKGgGaAloD0MILbMIxdZRbkCUhpRSlGgVTYgBaBZHQLFcswaisXB1fZQoaAZoCWgPQwi2vd2SnFdrQJSGlFKUaBVNYwFoFkdAsVzPrMTviXV9lChoBmgJaA9DCBdH5SZq72pAlIaUUpRoFU14AWgWR0CxXNwtrbg1dX2UKGgGaAloD0MIEk4LXvTjU0CUhpRSlGgVTegDaBZHQLFc9LRrrPd1fZQoaAZoCWgPQwgng6PkVapuQJSGlFKUaBVNhwFoFkdAsV12+ajN6nV9lChoBmgJaA9DCNxKr83Gxm9AlIaUUpRoFU1kAWgWR0CxXbsUuctodX2UKGgGaAloD0MIgSVXsfh/Q8CUhpRSlGgVTRcBaBZHQLFeBE87p3Z1fZQoaAZoCWgPQwgpz7wcdqFqQJSGlFKUaBVNUQFoFkdAsV5D/ffoBHV9lChoBmgJaA9DCFovhnJiMXBAlIaUUpRoFU12AWgWR0CxX3Zqynk1dX2UKGgGaAloD0MIUFYMVweqWkCUhpRSlGgVTegDaBZHQLFgFlKK5091fZQoaAZoCWgPQwi3mJ8bmjNvQJSGlFKUaBVNbQFoFkdAsWChxJd0JXV9lChoBmgJaA9DCMZpiCp8TW1AlIaUUpRoFU0FAmgWR0CxYLiAlOXWdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 544, "n_steps": 512, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}