Add SetFit model
Browse files- 1_Pooling/config.json +9 -0
- README.md +225 -0
- config.json +65 -0
- config_sentence_transformers.json +7 -0
- config_setfit.json +9 -0
- model.safetensors +3 -0
- model_head.pkl +3 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +51 -0
- tokenizer.json +0 -0
- tokenizer_config.json +73 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false
|
9 |
+
}
|
README.md
ADDED
@@ -0,0 +1,225 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: setfit
|
3 |
+
tags:
|
4 |
+
- setfit
|
5 |
+
- sentence-transformers
|
6 |
+
- text-classification
|
7 |
+
- generated_from_setfit_trainer
|
8 |
+
metrics:
|
9 |
+
- accuracy
|
10 |
+
widget:
|
11 |
+
- text: Specific information applicable to Parties, including regional economic integration
|
12 |
+
organizations and their member States, that have reached an agreement to act jointly
|
13 |
+
under Article 4, paragraph 2, of the Paris Agreement, including the Parties that
|
14 |
+
agreed to act jointly and the terms of the agreement, in accordance with Article
|
15 |
+
4, paragraphs 16–18, of the Paris Agreement. Not applicable. (c). How the Party’s
|
16 |
+
preparation of its nationally determined contribution has been informed by the
|
17 |
+
outcomes of the global stocktake, in accordance with Article 4, paragraph 9, of
|
18 |
+
the Paris Agreement.
|
19 |
+
- text: 'In the shipping and aviation sectors, emission reduction efforts will be
|
20 |
+
focused on distributing eco-friendly ships and enhancing the operational efficiency
|
21 |
+
of aircraft. Agriculture, livestock farming and fisheries: The Republic Korea
|
22 |
+
is introducing various options to accelerate low-carbon farming, for instance,
|
23 |
+
improving irrigation techniques in rice paddies and adopting low-input systems
|
24 |
+
for nitrogen fertilizers.'
|
25 |
+
- text: As part of this commitment, Oman s upstream oil and gas industry is developing
|
26 |
+
economically viable solutions to phase out routine flaring as quickly as possible
|
27 |
+
and ahead of the World Bank s target date. IV. Climate Preparedness and Resilience.
|
28 |
+
The Sultanate of Oman has stepped up its efforts in advancing its expertise and
|
29 |
+
methodologies to better manage the climate change risks over the past five years.
|
30 |
+
The adaptation efforts are underway, and the status of adaptation planning is
|
31 |
+
still at a nascent stage.
|
32 |
+
- text: 'Synergy and coherence 46 VII- Gender and youth 46 VIII- Education and employment
|
33 |
+
48 ANNEXES. 49 Annex No. 1: Details of mitigation measures, conditional and non-conditional,
|
34 |
+
by sector 49 Annex No.2: List of adaptation actions proposed by sectors. 57 Annex
|
35 |
+
No.3: GCF project portfolio. 63 CONTRIBUTION DENTERMINEE AT NATIONAL LEVEL CDN
|
36 |
+
MAURITANIE LIST OF TABLES Table 1: Summary of funding needs for the CND 2021-2030
|
37 |
+
updated. 12 Table 2: CND 2021-2030 mitigation measures updated by sector (cumulative
|
38 |
+
cost and reduction potential for the period). 14 Table 3: CND 2021-2030 adaptation
|
39 |
+
measures updated by sector. Error!'
|
40 |
+
- text: In the transport sector, restructuing is planned through a number of large
|
41 |
+
infrastructure initiatives aiming to revive the role of public transport and achieving
|
42 |
+
a relevant share of fuel efficient vehicles. Under both the conditional and unconditional
|
43 |
+
mitigation scenarios, Lebanon will achieve sizeable emission reductions. With
|
44 |
+
regards to adaptation, Lebanon has planned comprehensive sectoral actions related
|
45 |
+
to water, agriculture/forestry and biodiversity, for example related to irrigation,
|
46 |
+
forest management, etc. It also continues developing adaptation strategies in
|
47 |
+
the remaining sectors.
|
48 |
+
pipeline_tag: text-classification
|
49 |
+
inference: false
|
50 |
+
co2_eq_emissions:
|
51 |
+
emissions: 25.8151164022705
|
52 |
+
source: codecarbon
|
53 |
+
training_type: fine-tuning
|
54 |
+
on_cloud: false
|
55 |
+
cpu_model: Intel(R) Xeon(R) CPU @ 2.00GHz
|
56 |
+
ram_total_size: 12.674781799316406
|
57 |
+
hours_used: 0.622
|
58 |
+
hardware_used: 1 x Tesla T4
|
59 |
+
base_model: ppsingh/SECTOR-multilabel-mpnet_w
|
60 |
+
---
|
61 |
+
|
62 |
+
# SetFit with ppsingh/SECTOR-multilabel-mpnet_w
|
63 |
+
|
64 |
+
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [ppsingh/SECTOR-multilabel-mpnet_w](https://huggingface.co/ppsingh/SECTOR-multilabel-mpnet_w) as the Sentence Transformer embedding model. A [SetFitHead](huggingface.co/docs/setfit/reference/main#setfit.SetFitHead) instance is used for classification.
|
65 |
+
|
66 |
+
The model has been trained using an efficient few-shot learning technique that involves:
|
67 |
+
|
68 |
+
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
|
69 |
+
2. Training a classification head with features from the fine-tuned Sentence Transformer.
|
70 |
+
|
71 |
+
## Model Details
|
72 |
+
|
73 |
+
### Model Description
|
74 |
+
- **Model Type:** SetFit
|
75 |
+
- **Sentence Transformer body:** [ppsingh/SECTOR-multilabel-mpnet_w](https://huggingface.co/ppsingh/SECTOR-multilabel-mpnet_w)
|
76 |
+
- **Classification head:** a [SetFitHead](huggingface.co/docs/setfit/reference/main#setfit.SetFitHead) instance
|
77 |
+
- **Maximum Sequence Length:** 512 tokens
|
78 |
+
- **Number of Classes:** 4 classes
|
79 |
+
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
|
80 |
+
<!-- - **Language:** Unknown -->
|
81 |
+
<!-- - **License:** Unknown -->
|
82 |
+
|
83 |
+
### Model Sources
|
84 |
+
|
85 |
+
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
|
86 |
+
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
|
87 |
+
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
|
88 |
+
|
89 |
+
## Uses
|
90 |
+
|
91 |
+
### Direct Use for Inference
|
92 |
+
|
93 |
+
First install the SetFit library:
|
94 |
+
|
95 |
+
```bash
|
96 |
+
pip install setfit
|
97 |
+
```
|
98 |
+
|
99 |
+
Then you can load this model and run inference.
|
100 |
+
|
101 |
+
```python
|
102 |
+
from setfit import SetFitModel
|
103 |
+
|
104 |
+
# Download from the 🤗 Hub
|
105 |
+
model = SetFitModel.from_pretrained("ppsingh/iki_sector_setfit")
|
106 |
+
# Run inference
|
107 |
+
preds = model("In the shipping and aviation sectors, emission reduction efforts will be focused on distributing eco-friendly ships and enhancing the operational efficiency of aircraft. Agriculture, livestock farming and fisheries: The Republic Korea is introducing various options to accelerate low-carbon farming, for instance, improving irrigation techniques in rice paddies and adopting low-input systems for nitrogen fertilizers.")
|
108 |
+
```
|
109 |
+
|
110 |
+
<!--
|
111 |
+
### Downstream Use
|
112 |
+
|
113 |
+
*List how someone could finetune this model on their own dataset.*
|
114 |
+
-->
|
115 |
+
|
116 |
+
<!--
|
117 |
+
### Out-of-Scope Use
|
118 |
+
|
119 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
120 |
+
-->
|
121 |
+
|
122 |
+
<!--
|
123 |
+
## Bias, Risks and Limitations
|
124 |
+
|
125 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
126 |
+
-->
|
127 |
+
|
128 |
+
<!--
|
129 |
+
### Recommendations
|
130 |
+
|
131 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
132 |
+
-->
|
133 |
+
|
134 |
+
## Training Details
|
135 |
+
|
136 |
+
### Training Set Metrics
|
137 |
+
| Training set | Min | Median | Max |
|
138 |
+
|:-------------|:----|:-------|:----|
|
139 |
+
| Word count | 35 | 76.164 | 170 |
|
140 |
+
|
141 |
+
### Training Hyperparameters
|
142 |
+
- batch_size: (16, 2)
|
143 |
+
- num_epochs: (1, 0)
|
144 |
+
- max_steps: -1
|
145 |
+
- sampling_strategy: oversampling
|
146 |
+
- body_learning_rate: (2e-05, 1e-05)
|
147 |
+
- head_learning_rate: 0.01
|
148 |
+
- loss: CosineSimilarityLoss
|
149 |
+
- distance_metric: cosine_distance
|
150 |
+
- margin: 0.25
|
151 |
+
- end_to_end: False
|
152 |
+
- use_amp: False
|
153 |
+
- warmup_proportion: 0.01
|
154 |
+
- seed: 42
|
155 |
+
- eval_max_steps: -1
|
156 |
+
- load_best_model_at_end: False
|
157 |
+
|
158 |
+
### Training Results
|
159 |
+
| Epoch | Step | Training Loss | Validation Loss |
|
160 |
+
|:------:|:----:|:-------------:|:---------------:|
|
161 |
+
| 0.0005 | 1 | 0.2029 | - |
|
162 |
+
| 0.0993 | 200 | 0.0111 | 0.1124 |
|
163 |
+
| 0.1985 | 400 | 0.0063 | 0.111 |
|
164 |
+
| 0.2978 | 600 | 0.0183 | 0.1214 |
|
165 |
+
| 0.3970 | 800 | 0.0197 | 0.1248 |
|
166 |
+
| 0.4963 | 1000 | 0.0387 | 0.1339 |
|
167 |
+
| 0.5955 | 1200 | 0.0026 | 0.1181 |
|
168 |
+
| 0.6948 | 1400 | 0.0378 | 0.1208 |
|
169 |
+
| 0.7940 | 1600 | 0.0285 | 0.1267 |
|
170 |
+
| 0.8933 | 1800 | 0.0129 | 0.1254 |
|
171 |
+
| 0.9926 | 2000 | 0.0341 | 0.1271 |
|
172 |
+
|
173 |
+
### Environmental Impact
|
174 |
+
Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
|
175 |
+
- **Carbon Emitted**: 0.026 kg of CO2
|
176 |
+
- **Hours Used**: 0.622 hours
|
177 |
+
|
178 |
+
### Training Hardware
|
179 |
+
- **On Cloud**: No
|
180 |
+
- **GPU Model**: 1 x Tesla T4
|
181 |
+
- **CPU Model**: Intel(R) Xeon(R) CPU @ 2.00GHz
|
182 |
+
- **RAM Size**: 12.67 GB
|
183 |
+
|
184 |
+
### Framework Versions
|
185 |
+
- Python: 3.10.12
|
186 |
+
- SetFit: 1.0.3
|
187 |
+
- Sentence Transformers: 2.3.1
|
188 |
+
- Transformers: 4.35.2
|
189 |
+
- PyTorch: 2.1.0+cu121
|
190 |
+
- Datasets: 2.3.0
|
191 |
+
- Tokenizers: 0.15.1
|
192 |
+
|
193 |
+
## Citation
|
194 |
+
|
195 |
+
### BibTeX
|
196 |
+
```bibtex
|
197 |
+
@article{https://doi.org/10.48550/arxiv.2209.11055,
|
198 |
+
doi = {10.48550/ARXIV.2209.11055},
|
199 |
+
url = {https://arxiv.org/abs/2209.11055},
|
200 |
+
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
|
201 |
+
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
202 |
+
title = {Efficient Few-Shot Learning Without Prompts},
|
203 |
+
publisher = {arXiv},
|
204 |
+
year = {2022},
|
205 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
206 |
+
}
|
207 |
+
```
|
208 |
+
|
209 |
+
<!--
|
210 |
+
## Glossary
|
211 |
+
|
212 |
+
*Clearly define terms in order to be accessible across audiences.*
|
213 |
+
-->
|
214 |
+
|
215 |
+
<!--
|
216 |
+
## Model Card Authors
|
217 |
+
|
218 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
219 |
+
-->
|
220 |
+
|
221 |
+
<!--
|
222 |
+
## Model Card Contact
|
223 |
+
|
224 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
225 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "ppsingh/SECTOR-multilabel-mpnet_w",
|
3 |
+
"architectures": [
|
4 |
+
"MPNetModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"eos_token_id": 2,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 768,
|
12 |
+
"id2label": {
|
13 |
+
"0": "Agriculture",
|
14 |
+
"1": "Buildings",
|
15 |
+
"2": "Coastal Zone",
|
16 |
+
"3": "Cross-Cutting Area",
|
17 |
+
"4": "Disaster Risk Management (DRM)",
|
18 |
+
"5": "Economy-wide",
|
19 |
+
"6": "Education",
|
20 |
+
"7": "Energy",
|
21 |
+
"8": "Environment",
|
22 |
+
"9": "Health",
|
23 |
+
"10": "Industries",
|
24 |
+
"11": "LULUCF/Forestry",
|
25 |
+
"12": "Social Development",
|
26 |
+
"13": "Tourism",
|
27 |
+
"14": "Transport",
|
28 |
+
"15": "Urban",
|
29 |
+
"16": "Waste",
|
30 |
+
"17": "Water"
|
31 |
+
},
|
32 |
+
"initializer_range": 0.02,
|
33 |
+
"intermediate_size": 3072,
|
34 |
+
"label2id": {
|
35 |
+
"Agriculture": 0,
|
36 |
+
"Buildings": 1,
|
37 |
+
"Coastal Zone": 2,
|
38 |
+
"Cross-Cutting Area": 3,
|
39 |
+
"Disaster Risk Management (DRM)": 4,
|
40 |
+
"Economy-wide": 5,
|
41 |
+
"Education": 6,
|
42 |
+
"Energy": 7,
|
43 |
+
"Environment": 8,
|
44 |
+
"Health": 9,
|
45 |
+
"Industries": 10,
|
46 |
+
"LULUCF/Forestry": 11,
|
47 |
+
"Social Development": 12,
|
48 |
+
"Tourism": 13,
|
49 |
+
"Transport": 14,
|
50 |
+
"Urban": 15,
|
51 |
+
"Waste": 16,
|
52 |
+
"Water": 17
|
53 |
+
},
|
54 |
+
"layer_norm_eps": 1e-05,
|
55 |
+
"max_position_embeddings": 514,
|
56 |
+
"model_type": "mpnet",
|
57 |
+
"num_attention_heads": 12,
|
58 |
+
"num_hidden_layers": 12,
|
59 |
+
"pad_token_id": 1,
|
60 |
+
"problem_type": "multi_label_classification",
|
61 |
+
"relative_attention_num_buckets": 32,
|
62 |
+
"torch_dtype": "float32",
|
63 |
+
"transformers_version": "4.35.2",
|
64 |
+
"vocab_size": 30527
|
65 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "2.3.1",
|
4 |
+
"transformers": "4.35.2",
|
5 |
+
"pytorch": "2.1.0+cu121"
|
6 |
+
}
|
7 |
+
}
|
config_setfit.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"normalize_embeddings": true,
|
3 |
+
"labels": [
|
4 |
+
"Economy-wide",
|
5 |
+
"Energy",
|
6 |
+
"Other Sector",
|
7 |
+
"Transport"
|
8 |
+
]
|
9 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c5f137bb2e1e7da1eebf8b21d4b5878675c41b4240614b3e4bccb248029eb52c
|
3 |
+
size 437967672
|
model_head.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:88559af6420967265b7519c9b35c1a3efa8a7ef3ee3c4b40d3f5f3225ffab36b
|
3 |
+
size 13858
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"cls_token": {
|
10 |
+
"content": "<s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"eos_token": {
|
17 |
+
"content": "</s>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"mask_token": {
|
24 |
+
"content": "<mask>",
|
25 |
+
"lstrip": true,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"pad_token": {
|
31 |
+
"content": "<pad>",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
},
|
37 |
+
"sep_token": {
|
38 |
+
"content": "</s>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
},
|
44 |
+
"unk_token": {
|
45 |
+
"content": "[UNK]",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false
|
50 |
+
}
|
51 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "<s>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "<pad>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "</s>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "<unk>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": true,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"104": {
|
36 |
+
"content": "[UNK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
},
|
43 |
+
"30526": {
|
44 |
+
"content": "<mask>",
|
45 |
+
"lstrip": true,
|
46 |
+
"normalized": false,
|
47 |
+
"rstrip": false,
|
48 |
+
"single_word": false,
|
49 |
+
"special": true
|
50 |
+
}
|
51 |
+
},
|
52 |
+
"bos_token": "<s>",
|
53 |
+
"clean_up_tokenization_spaces": true,
|
54 |
+
"cls_token": "<s>",
|
55 |
+
"do_lower_case": true,
|
56 |
+
"eos_token": "</s>",
|
57 |
+
"mask_token": "<mask>",
|
58 |
+
"max_length": 128,
|
59 |
+
"model_max_length": 512,
|
60 |
+
"pad_to_multiple_of": null,
|
61 |
+
"pad_token": "<pad>",
|
62 |
+
"pad_token_type_id": 0,
|
63 |
+
"padding_side": "right",
|
64 |
+
"problem_type": "multi_label_classification",
|
65 |
+
"sep_token": "</s>",
|
66 |
+
"stride": 0,
|
67 |
+
"strip_accents": null,
|
68 |
+
"tokenize_chinese_chars": true,
|
69 |
+
"tokenizer_class": "MPNetTokenizer",
|
70 |
+
"truncation_side": "right",
|
71 |
+
"truncation_strategy": "longest_first",
|
72 |
+
"unk_token": "[UNK]"
|
73 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|