File size: 2,729 Bytes
0ed12a5
fdb5c33
0ed12a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
---
base_model: microsoft/layoutlm-base-uncased
library_name: transformers
license: mit
tags:
- generated_from_keras_callback
model-index:
- name: layoutlm-funsd-tf
  results: []
---

<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->

# layoutlm-funsd-tf

This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.2459
- Validation Loss: 0.6795
- Train Overall Precision: 0.7276
- Train Overall Recall: 0.7812
- Train Overall F1: 0.7534
- Train Overall Accuracy: 0.8032
- Epoch: 7

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 3e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: mixed_float16

### Training results

| Train Loss | Validation Loss | Train Overall Precision | Train Overall Recall | Train Overall F1 | Train Overall Accuracy | Epoch |
|:----------:|:---------------:|:-----------------------:|:--------------------:|:----------------:|:----------------------:|:-----:|
| 1.7017     | 1.4088          | 0.2201                  | 0.2373               | 0.2284           | 0.4952                 | 0     |
| 1.1605     | 0.8580          | 0.5955                  | 0.6849               | 0.6371           | 0.7371                 | 1     |
| 0.7603     | 0.6747          | 0.6574                  | 0.7220               | 0.6882           | 0.7808                 | 2     |
| 0.5694     | 0.6343          | 0.6674                  | 0.7551               | 0.7086           | 0.7919                 | 3     |
| 0.4494     | 0.6429          | 0.6828                  | 0.7787               | 0.7276           | 0.7887                 | 4     |
| 0.3628     | 0.6226          | 0.7220                  | 0.7752               | 0.7476           | 0.8112                 | 5     |
| 0.3092     | 0.6537          | 0.7172                  | 0.7837               | 0.7490           | 0.8010                 | 6     |
| 0.2459     | 0.6795          | 0.7276                  | 0.7812               | 0.7534           | 0.8032                 | 7     |


### Framework versions

- Transformers 4.44.2
- TensorFlow 2.17.0
- Datasets 3.0.1
- Tokenizers 0.19.1