pradanaadn commited on
Commit
7b1ab03
1 Parent(s): 90018a3

End of training

Browse files
README.md CHANGED
@@ -1,6 +1,6 @@
1
  ---
2
  license: apache-2.0
3
- base_model: google/vit-base-patch16-224-in21k
4
  tags:
5
  - generated_from_trainer
6
  datasets:
@@ -22,7 +22,7 @@ model-index:
22
  metrics:
23
  - name: Accuracy
24
  type: accuracy
25
- value: 0.56875
26
  ---
27
 
28
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -30,10 +30,10 @@ should probably proofread and complete it, then remove this comment. -->
30
 
31
  # vit-emotional-classifier
32
 
33
- This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset.
34
  It achieves the following results on the evaluation set:
35
- - Loss: 1.2330
36
- - Accuracy: 0.5687
37
 
38
  ## Model description
39
 
@@ -53,57 +53,27 @@ More information needed
53
 
54
  The following hyperparameters were used during training:
55
  - learning_rate: 5e-05
56
- - train_batch_size: 16
57
- - eval_batch_size: 16
58
  - seed: 42
59
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
60
- - lr_scheduler_type: cosine_with_restarts
61
- - num_epochs: 20
62
 
63
  ### Training results
64
 
65
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
66
  |:-------------:|:-----:|:----:|:---------------:|:--------:|
67
- | 2.0354 | 0.5 | 20 | 1.9924 | 0.275 |
68
- | 1.9057 | 1.0 | 40 | 1.8266 | 0.3937 |
69
- | 1.67 | 1.5 | 60 | 1.6951 | 0.3438 |
70
- | 1.6237 | 2.0 | 80 | 1.5888 | 0.4437 |
71
- | 1.5413 | 2.5 | 100 | 1.5295 | 0.45 |
72
- | 1.4604 | 3.0 | 120 | 1.5311 | 0.4437 |
73
- | 1.4092 | 3.5 | 140 | 1.5212 | 0.4562 |
74
- | 1.4291 | 4.0 | 160 | 1.5151 | 0.4188 |
75
- | 1.4044 | 4.5 | 180 | 1.4869 | 0.4313 |
76
- | 1.3961 | 5.0 | 200 | 1.4961 | 0.4062 |
77
- | 1.2358 | 5.5 | 220 | 1.3494 | 0.55 |
78
- | 1.1714 | 6.0 | 240 | 1.3767 | 0.4875 |
79
- | 1.0897 | 6.5 | 260 | 1.3382 | 0.5125 |
80
- | 1.1153 | 7.0 | 280 | 1.2991 | 0.525 |
81
- | 1.0265 | 7.5 | 300 | 1.3381 | 0.5188 |
82
- | 1.0261 | 8.0 | 320 | 1.3143 | 0.5188 |
83
- | 1.0227 | 8.5 | 340 | 1.3201 | 0.5125 |
84
- | 0.9978 | 9.0 | 360 | 1.3939 | 0.4375 |
85
- | 0.9222 | 9.5 | 380 | 1.3469 | 0.4875 |
86
- | 0.9489 | 10.0 | 400 | 1.2344 | 0.525 |
87
- | 0.8079 | 10.5 | 420 | 1.1800 | 0.5938 |
88
- | 0.7336 | 11.0 | 440 | 1.1935 | 0.5687 |
89
- | 0.7158 | 11.5 | 460 | 1.2030 | 0.5813 |
90
- | 0.7004 | 12.0 | 480 | 1.2705 | 0.525 |
91
- | 0.7589 | 12.5 | 500 | 1.2186 | 0.5687 |
92
- | 0.6966 | 13.0 | 520 | 1.2049 | 0.6125 |
93
- | 0.5767 | 13.5 | 540 | 1.2057 | 0.55 |
94
- | 0.6569 | 14.0 | 560 | 1.2047 | 0.5312 |
95
- | 0.5291 | 14.5 | 580 | 1.2649 | 0.55 |
96
- | 0.4644 | 15.0 | 600 | 1.2103 | 0.5938 |
97
- | 0.4895 | 15.5 | 620 | 1.2741 | 0.5687 |
98
- | 0.4769 | 16.0 | 640 | 1.2278 | 0.5875 |
99
- | 0.4804 | 16.5 | 660 | 1.3078 | 0.5188 |
100
- | 0.5169 | 17.0 | 680 | 1.2963 | 0.5 |
101
- | 0.4137 | 17.5 | 700 | 1.3284 | 0.55 |
102
- | 0.3856 | 18.0 | 720 | 1.2393 | 0.5563 |
103
- | 0.4545 | 18.5 | 740 | 1.2368 | 0.5687 |
104
- | 0.4186 | 19.0 | 760 | 1.2490 | 0.5938 |
105
- | 0.3814 | 19.5 | 780 | 1.2246 | 0.55 |
106
- | 0.3813 | 20.0 | 800 | 1.3488 | 0.5375 |
107
 
108
 
109
  ### Framework versions
 
1
  ---
2
  license: apache-2.0
3
+ base_model: dima806/facial_emotions_image_detection
4
  tags:
5
  - generated_from_trainer
6
  datasets:
 
22
  metrics:
23
  - name: Accuracy
24
  type: accuracy
25
+ value: 0.6125
26
  ---
27
 
28
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
30
 
31
  # vit-emotional-classifier
32
 
33
+ This model is a fine-tuned version of [dima806/facial_emotions_image_detection](https://huggingface.co/dima806/facial_emotions_image_detection) on the imagefolder dataset.
34
  It achieves the following results on the evaluation set:
35
+ - Loss: 1.2566
36
+ - Accuracy: 0.6125
37
 
38
  ## Model description
39
 
 
53
 
54
  The following hyperparameters were used during training:
55
  - learning_rate: 5e-05
56
+ - train_batch_size: 32
57
+ - eval_batch_size: 8
58
  - seed: 42
59
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
60
+ - lr_scheduler_type: linear
61
+ - num_epochs: 10
62
 
63
  ### Training results
64
 
65
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
66
  |:-------------:|:-----:|:----:|:---------------:|:--------:|
67
+ | 1.8894 | 1.0 | 20 | 1.8158 | 0.3875 |
68
+ | 1.5847 | 2.0 | 40 | 1.5658 | 0.475 |
69
+ | 1.3711 | 3.0 | 60 | 1.4249 | 0.5125 |
70
+ | 1.205 | 4.0 | 80 | 1.3139 | 0.5875 |
71
+ | 1.1244 | 5.0 | 100 | 1.2566 | 0.6125 |
72
+ | 0.9923 | 6.0 | 120 | 1.2256 | 0.6062 |
73
+ | 0.8801 | 7.0 | 140 | 1.1949 | 0.5875 |
74
+ | 0.8631 | 8.0 | 160 | 1.1929 | 0.575 |
75
+ | 0.8277 | 9.0 | 180 | 1.1734 | 0.6 |
76
+ | 0.786 | 10.0 | 200 | 1.1779 | 0.6 |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77
 
78
 
79
  ### Framework versions
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:3039c4c036cb75252cac79484c05989551be9f634bf1d5c3c8a1e5e45a1de822
3
  size 343242432
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5292229cc65e3c9646a6ddaa9b17b520cf959b3e0f6cf1a690e2f94f3ff86631
3
  size 343242432
runs/Jun05_08-36-31_02ebc0950e27/events.out.tfevents.1717576598.02ebc0950e27.473.19 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:5028f15963d94d4853b4301bf29d931e17be9a4804f6d452aeb73db0ee319e92
3
- size 12519
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6024f70d9b73ba9c060d202062dbd6dad3a58942a893c96574a48a4bd976bc3e
3
+ size 12873
runs/Jun05_08-36-31_02ebc0950e27/events.out.tfevents.1717576948.02ebc0950e27.473.20 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:317a7ee3adfe2f0c377cdf2d5350d32db5acd2e59b99c03e0204027f333b03b2
3
+ size 411