--- license: apache-2.0 base_model: dima806/facial_emotions_image_detection tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: vit-emotional-classifier results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.6125 --- # vit-emotional-classifier This model is a fine-tuned version of [dima806/facial_emotions_image_detection](https://huggingface.co/dima806/facial_emotions_image_detection) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.2566 - Accuracy: 0.6125 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.8894 | 1.0 | 20 | 1.8158 | 0.3875 | | 1.5847 | 2.0 | 40 | 1.5658 | 0.475 | | 1.3711 | 3.0 | 60 | 1.4249 | 0.5125 | | 1.205 | 4.0 | 80 | 1.3139 | 0.5875 | | 1.1244 | 5.0 | 100 | 1.2566 | 0.6125 | | 0.9923 | 6.0 | 120 | 1.2256 | 0.6062 | | 0.8801 | 7.0 | 140 | 1.1949 | 0.5875 | | 0.8631 | 8.0 | 160 | 1.1929 | 0.575 | | 0.8277 | 9.0 | 180 | 1.1734 | 0.6 | | 0.786 | 10.0 | 200 | 1.1779 | 0.6 | ### Framework versions - Transformers 4.41.1 - Pytorch 2.3.0+cu121 - Datasets 2.19.2 - Tokenizers 0.19.1