File size: 9,179 Bytes
2f7cb3f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
# -*- coding: utf-8 -*-
"""ytcomments.ipynb



Automatically generated by Colaboratory.



Original file is located at

    https://colab.research.google.com/drive/1IAkt_1sG94cjURWKBvghkoK2KlZiYzX9

"""

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score
from sklearn.preprocessing import LabelEncoder

df=pd.read_csv("/content/comments.csv")

df.head()

df=df.iloc[:,[2,4]]

df.head(2)

df.info()

df.isnull().sum()

df.dropna(axis=0,how='any',inplace=True)

df.columns

df['Sentiment']=df['Sentiment'].astype('int')

#######################################
#basic_preprocessing
#######################################

df['Comment']=df['Comment'].str.lower()

import string
string.punctuation

exclude=string.punctuation
def remove_punc(text):
  for char in exclude:
    text=text.replace(char,'')
  return text

df['Comment']=df['Comment'].apply(remove_punc)

import nltk
nltk.download('stopwords')

from nltk.corpus import stopwords
stopwords.words('english')

def remove_stopwords(text):
  new_text=[]
  for word in text.split():
    if word in stopwords.words('english'):
      new_text.append('')
    else:
      new_text.append(word)
  x=new_text[:]
  new_text.clear()
  return " ".join(x)

df['Comment']=df['Comment'].apply(remove_stopwords)

from nltk.stem.porter import PorterStemmer
ps=PorterStemmer()

def stem_words(text):
  return " ".join([ps.stem(word) for word in text.split()])

df['Comment']=df['Comment'].apply(stem_words)

####################################################
#EDA
####################################################

plt.pie(df['Sentiment'].value_counts(), labels=['negative','neutral','positive'],autopct="%0.2f")
plt.show()

import nltk

nltk.download('punkt')

df['total_characters']=df['Comment'].apply(len)

df.head(2)

df['total_words'] = df['Comment'].apply(lambda x:len(nltk.word_tokenize(x)))

df.head(2)

df['total_sentences'] = df['Comment'].apply(lambda x:len(nltk.sent_tokenize(x)))

df.head(2)

df[['total_characters','total_sentences','total_words']].describe()

mask0=df['Sentiment']==0
mask1=df['Sentiment']==1
mask2=df['Sentiment']==2

df[mask0][['total_sentences','total_words','total_characters']].describe()

df[mask1][['total_sentences','total_words','total_characters']].describe()

df[mask2][['total_sentences','total_words','total_characters']].describe()

plt.figure(figsize=(12,6))
sns.histplot(df[df['Sentiment'] == 0]['total_characters'],color='green')
sns.histplot(df[df['Sentiment'] == 1]['total_characters'],color='red')
sns.histplot(df[df['Sentiment'] == 2]['total_characters'],color='pink')

plt.figure(figsize=(10,4))
sns.histplot(df[df['Sentiment'] == 0]['total_words'],color='green')
sns.histplot(df[df['Sentiment'] == 1]['total_words'],color='red')
sns.histplot(df[df['Sentiment'] == 2]['total_words'],color='pink')

sns.pairplot(df,hue='Sentiment')

sns.heatmap(df.corr(),annot=True)

from wordcloud import WordCloud
wc=WordCloud(width=500,height=500,min_font_size=10,background_color='white')

negative_wc = wc.generate(df[df['Sentiment'] == 0]['Comment'].str.cat(sep=" "))

neutral_wc = wc.generate(df[df['Sentiment'] == 1]['Comment'].str.cat(sep=" "))

positive_wc = wc.generate(df[df['Sentiment'] == 2]['Comment'].str.cat(sep=" "))

plt.figure(figsize=(6,6))
plt.imshow(negative_wc)

plt.figure(figsize=(6,6))
plt.imshow(neutral_wc)

plt.figure(figsize=(6,6))
plt.imshow(positive_wc)

negative_corpus = []
for msg in df[df['Sentiment'] == 0]['Comment'].tolist():
    for word in msg.split():
        negative_corpus.append(word)

neutral_corpus = []
for msg in df[df['Sentiment'] == 1]['Comment'].tolist():
    for word in msg.split():
        neutral_corpus.append(word)

positive_corpus = []
for msg in df[df['Sentiment'] == 1]['Comment'].tolist():
    for word in msg.split():
        positive_corpus.append(word)

print(len(negative_corpus))
print(len(neutral_corpus))
print(len(positive_corpus))

from collections import Counter

pd.DataFrame(Counter(negative_corpus).most_common(30))





##############################################
#bag of words#
##############################################

cv=CountVectorizer(lowercase=True,stop_words='english',max_features=3000)
tfidf=TfidfVectorizer(max_features=3000)

features_cv=cv.fit_transform(df['Comment']).toarray()
features_tfidf=tfidf.fit_transform(df['Comment']).toarray()

type(features_cv)

features_cv

dict1 = pd.DataFrame(features_cv)
dict2 = pd.DataFrame(features_tfidf)

dict1.shape

df.columns

x_cv=dict1.iloc[:,:]
y_cv=df[['Sentiment']]

y_cv.columns

np.unique(y_cv)

x_tfidf=dict1.iloc[:,:]
y_tfidf=df.iloc[:,-1]

print(x_cv.shape)
print(x_tfidf.shape)

print(y_cv.shape)
print(y_tfidf.shape)

x_cv_train,x_cv_test,y_cv_train,y_cv_test=train_test_split(x_cv,y_cv,test_size=0.2)

y_cv_test.shape

x_tfidf_train,x_tfidf_test,y_tfidf_train,y_tfidf_test=train_test_split(x_tfidf,y_tfidf,test_size=0.2)

print(x_cv_train.shape)
print(y_cv_test.shape)
print(x_tfidf_train.shape)
print(y_tfidf_test.shape)

from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC
from sklearn.naive_bayes import MultinomialNB
from sklearn.tree import DecisionTreeClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import AdaBoostClassifier
from sklearn.ensemble import BaggingClassifier
from sklearn.ensemble import ExtraTreesClassifier
from sklearn.ensemble import GradientBoostingClassifier
from xgboost import XGBClassifier
from sklearn.naive_bayes import GaussianNB,MultinomialNB,BernoulliNB
from sklearn.metrics import accuracy_score,precision_score

svc = SVC(kernel='sigmoid', gamma=1.0)
knc = KNeighborsClassifier()
mnb = MultinomialNB()
dtc = DecisionTreeClassifier(max_depth=5)
lrc = LogisticRegression(solver='liblinear', penalty='l1')
rfc = RandomForestClassifier(n_estimators=50, random_state=2)
abc = AdaBoostClassifier(n_estimators=50, random_state=2)
bc = BaggingClassifier(n_estimators=50, random_state=2)
etc = ExtraTreesClassifier(n_estimators=50, random_state=2)
gbdt = GradientBoostingClassifier(n_estimators=50,random_state=2)
xgb = XGBClassifier(n_estimators=50,random_state=2)

clfs = {
    'SVC' : svc,
    'KN' : knc, 
    'NB': mnb, 
    'DT': dtc, 
    'LR': lrc, 
    'RF': rfc, 
    'AdaBoost': abc, 
    'BgC': bc, 
    'ETC': etc,
    'GBDT':gbdt,
    'xgb':xgb
}

def train_classifier(clf,X_train,y_train,X_test,y_test):
    clf.fit(x_cv_train,y_cv_train)
    y_cv_pred = clf.predict(x_cv_test)
    accuracy = accuracy_score(y_cv_test,y_cv_pred)
    precision = precision_score(y_cv_test,y_cv_pred,average='micro')
    
    return accuracy,precision

#######################################################
#********************Counvectorizer*******************#
#######################################################

np.unique(y_cv_test)

accuracy_scores = []
precision_scores = []

for name,clf in clfs.items():
    
    current_accuracy,current_precision = train_classifier(clf, x_cv_train,y_cv_train,x_cv_test,y_cv_test)
    
    print("For ",name)
    print("Accuracy - ",current_accuracy)
    print("Precision - ",current_precision)
    
    accuracy_scores.append(current_accuracy)
    precision_scores.append(current_precision)

performance_df = pd.DataFrame({'Algorithm':clfs.keys(),'Accuracy':accuracy_scores,'Precision':precision_scores}).sort_values('Precision',ascending=False)

performance_df

from sklearn.ensemble import VotingClassifier

svc = SVC(kernel='sigmoid', gamma=1.0,probability=True)
mnb = MultinomialNB()
etc = ExtraTreesClassifier(n_estimators=50, random_state=2)

voting = VotingClassifier(estimators=[('svm', svc), ('nb', mnb), ('et', etc)],voting='soft')

voting.fit(x_cv_train,y_cv_train)

y_pred = voting.predict(x_cv_test)

print("Accuracy",accuracy_score(y_cv_test,y_pred))
print("Precision",precision_score(y_cv_test,y_pred,average='micro'))



import pickle

pickle.dump(cv,open('vectorizer.pkl','wb'))

pickle.dump(lrc,open('model.pkl','wb'))







gnb = GaussianNB()
mnb = MultinomialNB()
bnb = BernoulliNB()

gnb.fit(x_cv_train,y_cv_train)

pred_gnb=gnb.predict(x_cv_test)

print(accuracy_score(y_cv_test,pred_gnb))
print(precision_score(y_cv_test,pred_gnb,average='micro'))

mnb.fit(x_cv_train,y_cv_train)

pred_mnb=mnb.predict(x_cv_test)

print(accuracy_score(y_cv_test,pred_mnb))
print(precision_score(y_cv_test,pred_mnb,average='micro'))

bnb.fit(x_cv_train,y_cv_train)

pred_bnb=bnb.predict(x_cv_test)

print(accuracy_score(y_cv_test,pred_bnb))
print(precision_score(y_cv_test,pred_bnb,average='micro'))