File size: 2,309 Bytes
e8dce21 4b11f03 e8dce21 4b11f03 e8dce21 4b11f03 e8dce21 4b11f03 67667e2 e8dce21 4b11f03 e8dce21 4b11f03 e8dce21 67667e2 4b11f03 e8dce21 d4fae90 e8dce21 4b11f03 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 |
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: praveenseb/product_review_generator
results: []
datasets:
- amazon_us_reviews
pipeline_tag: text-generation
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# praveenseb/product_review_generator
This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on a sample of [amazon_us_reviews](https://huggingface.co/datasets/amazon_us_reviews) dataset. The sample was drawn from 'Apparel_v1_00' subset.
## Model description
This model can auto generate review text for apparel products on providing product title, review rating (1-5) and review headline as an input prompt.
The input prompt should be in the format <|BOS|>product_title<|SEP|>product_rating<|SEP|>review_title<|SEP|>. For example,
<|BOS|>Columbia Women's Benton Springs Full-Zip Fleece Jacket<|SEP|>5<|SEP|>Awesome jacket!<|SEP|>. You can find the complete code in my [GitHub repository](https://github.com/praveenseb/product-review-generator).
## Intended uses & limitations
This model is only intended to demonstrate the text generation capabilities of transformer-based models. Do not use it commercially or for any real-life purpose .
The model is trained specifically on 'Apparel_v1_00' dataset. So, using non-apparel product titles in the input prompt may yield inconsistent results.
## Training procedure
Code used for training can found in my [GitHub repository](https://github.com/praveenseb/product-review-generator).
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'ExponentialDecay', 'config': {'initial_learning_rate': 0.0002, 'decay_steps': 1000, 'decay_rate': 0.95, 'staircase': True, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.0}
- training_precision: float32
### Training results
| Train Loss | Epoch |
|:----------:|:-----:|
| 0.7579 | 0 |
| 0.6720 | 1 |
### Framework versions
- Transformers 4.27.3
- TensorFlow 2.11.0
- Datasets 2.10.1
- Tokenizers 0.13.2 |